Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Polymers (Basel) ; 14(20)2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36297965

ABSTRACT

Bacterial cellulose (BC) samples were obtained in a static culture of K. xylinus under the effect of a low-intensity magnetic field, UV light, NaCl, and chloramphenicol. The effect of such stimuli on the amount of BC produced and its production rate, specific area, pore volume, and pore diameter were evaluated. The polysaccharide production was enhanced 2.28-fold by exposing K. xylinus culture to UV light (366 nm) and 1.7-fold by adding chloramphenicol (0.25 mM) to the medium in comparison to BC control. All the stimuli triggered a decrease in the rate of BC biosynthesis. BC membranes were found to be mesoporous materials with an average pore diameter from 21.37 to 25.73 nm. BC produced under a magnetic field showed the lowest values of specific area and pore volume (2.55 m2 g-1 and 0.024 cm3 g-1), while the BC synthesized in the presence of NaCl showed the highest (15.72 m2 g-1 and 0.11 cm3 g-1). FTIR spectra of the BC samples also demonstrated changes related to structural order. The rehydration property in these BC samples is not mainly mediated by the crystallinity level or porosity. In summary, these results support that BC production, surface, and structural properties could be modified by manipulating the physical and chemical stimuli investigated.

2.
Molecules ; 25(13)2020 Jul 05.
Article in English | MEDLINE | ID: mdl-32635597

ABSTRACT

A simplified procedure to synthesize zwitterionic cellulose by means of N-protected aspartic anhydride under mild conditions was developed. The preparation of modified cellulose samples was carried out under heterogeneous, aqueous conditions by reacting NH4OH-activated cellulose with aspartic anhydrides N-protected with trifluoroacetyl (TFAc) and carbobenzyloxy (Cbz). Modified cellulose samples Cel-Asp-N-TFAc and Cel-Asp-N-Cbz were characterized by Fourier Transform Infrared (FTIR) and 13C solid state Nuclear Magnetic Resonance (NMR) spectroscopy. The functionalization degree of each cellulose sample was determined by the 13C NMR signal integration values corresponding to the cellulose C1 vs. the Cα of the aspartate residue and corroborated by elemental analysis. In agreement, both analytical methods averaged a grafting degree of 20% for Cel-Asp-N-TFAc and 16% for Cel-Asp-N-Cbz. Conveniently, Cel-Asp-N-TFAc was concomitantly partially N-deprotected (65%) as determined by the ninhydrin method. The zwitterion character of this sample was confirmed by a potentiometric titration curve and the availability of these amino acid residues on the cellulose was inspected by adsorption kinetics method with a 100 mg L-1 cotton blue dye solution. In addition, the synthesis reported in the present work involves environmentally related advantages over previous methodologies developed in our group concerning to zwitterionic cellulose preparation.


Subject(s)
Anhydrides/chemistry , Aspartic Acid/chemistry , Cellulose/chemistry , Coloring Agents/metabolism , Adsorption , Anhydrides/metabolism , Aspartic Acid/metabolism , Cellulose/metabolism
3.
Carbohydr Res ; 461: 51-59, 2018 May 22.
Article in English | MEDLINE | ID: mdl-29587136

ABSTRACT

The production and crystallinity of 13C bacterial cellulose (BC) was examined in static culture of Komagataeibacter xylinus with different chemical and physical stimuli: the addition of NaCl or cloramphenicol as well as exposure to a magnetic field or to UV light. Crystalline BC biosynthesized under each stimulus was studied by XRD and solid state 13C NMR analyses. All treatments produced BC with enhanced crystallinity over 90% (XRD) and 80% (NMR) compared to the control (83 and 76%, respectively) or to Avicel (77 and 62%, respectively). The XRD data indicated that the crystallite size was 80-85 Å. Furthermore, changes on the allomorphs (Iα and Iß) ratio tendency of BC samples addressed to the stimuli were estimated using the C4 signal from 13C NMR data. These results showed a decrease of the allomorph Iα (3%) when BC was biosynthesized with UV light and chloramphenicol compared to control (58.79%). In contrast, the BC obtained with NaCl increased up to 60.31% of the Iα allomorph ratio.


Subject(s)
Cellulose/biosynthesis , Gluconacetobacter xylinus/metabolism , Magnetic Resonance Spectroscopy/methods , X-Ray Diffraction/methods , Cellulose/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL