Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(4 Pt 1): 041913, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22680504

ABSTRACT

We propose a simple cellular automaton model for the description of the evolution of a colony of Bacillus subtilis. The originality of our model lies in the fact that the bacteria can move in a pool of liquid. We assume that each migrating bacterium is surrounded by an individual pool, and the overlap of the latter gives rise to a collective pool with a higher water level. The bacteria migrate collectively when the level of water is high enough. When the bacteria are far enough from each other, the level of water becomes locally too low to allow migration, and the bacteria switch to a proliferating state. The proliferation-to-migration switch is triggered by high levels of a substance produced by proliferating bacteria. We show that it is possible to reproduce in a fairly satisfactory way the various forms that make up the experimentally observed morphological diagram of B. subtilis. We propose a phenomenological relation between the size of the water pool used in our model and the agar concentration of the substrate on which the bacteria migrate. We also compare experimental results from cutting the central part of the colony with the results of our simulations.


Subject(s)
Bacillus subtilis/cytology , Bacillus subtilis/physiology , Models, Biological , Rheology/methods , Water Microbiology , Water/chemistry , Computer Simulation , Motion
SELECTION OF CITATIONS
SEARCH DETAIL
...