Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Magn Reson Med ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38873709

ABSTRACT

PURPOSE: Quantitative magnetization transfer (qMT) models aim to quantify the contributions of lipids and macromolecules to the MRI signal. Hence, a model system that relates qMT parameters and their molecular sources may improve the interpretation of the qMT parameters. Here we used membrane lipid phantoms as a meaningful tool to study qMT models. By controlling the fraction and type of membrane lipids, we could test the accuracy, reliability, and interpretability of different qMT models. METHODS: We formulated liposomes with various lipid types and water-to-lipids fractions and measured their signals with spoiled gradient-echo MT. We fitted three known qMT models and estimated six parameters for every model. We tested the accuracy and reproducibility of the models and compared the dependency among the qMT parameters. We compared the samples' qMT parameters with their water-to-lipid fractions and with a simple MTnorm (= MTon/MToff) calculation. RESULTS: We found that the three qMT models fit the membrane lipids signals well. We also found that the estimated qMT parameters are highly interdependent. Interestingly, the estimated qMT parameters are a function of the membrane lipid type and also highly related to the water-to-lipid fraction. Finally, we find that most of the lipid sample's information can be captured using the common and easy to estimate MTnorm analysis. CONCLUSION: qMT parameters are sensitive to both the water-to-lipid fraction and to the lipid type. Estimating the water-to-lipid fraction can improve the characterization of membrane lipids' contributions to qMT parameters. Similar characterizations can be obtained using the MTnorm analysis.

2.
Nat Commun ; 14(1): 5467, 2023 09 12.
Article in English | MEDLINE | ID: mdl-37699931

ABSTRACT

Strict iron regulation is essential for normal brain function. The iron homeostasis, determined by the milieu of available iron compounds, is impaired in aging, neurodegenerative diseases and cancer. However, non-invasive assessment of different molecular iron environments implicating brain tissue's iron homeostasis remains a challenge. We present a magnetic resonance imaging (MRI) technology sensitive to the iron homeostasis of the living brain (the r1-r2* relaxivity). In vitro, our MRI approach reveals the distinct paramagnetic properties of ferritin, transferrin and ferrous iron ions. In the in vivo human brain, we validate our approach against ex vivo iron compounds quantification and gene expression. Our approach varies with the iron mobilization capacity across brain regions and in aging. It reveals brain tumors' iron homeostasis, and enhances the distinction between tumor tissue and non-pathological tissue without contrast agents. Therefore, our approach may allow for non-invasive research and diagnosis of iron homeostasis in living human brains.


Subject(s)
Brain Neoplasms , Brain , Humans , Brain/diagnostic imaging , Iron , Brain Neoplasms/diagnostic imaging , Ferritins , Aging
3.
Neuroimage ; 264: 119660, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36220534

ABSTRACT

The midbrain is the rostral-most part of the brainstem. It contains numerous nuclei and white matter tracts, which are involved in motor, auditory and visual processing, and changes in their structure and function have been associated with aging, as well as neurodegenerative disorders. Current tools for estimating midbrain subregions and their structure with MRI require high resolution and multi-parametric quantitative MRI measures. We propose an approach that relies on morphology to calculate profiles along the midbrain and show these profiles are sensitive to the underlying macrostructure of the midbrain. First, we show that the midbrain structure can be sampled, within subject space, along three main axes of the left and right midbrain, producing profiles that are similar across subjects. We use two data sets with different field strengths, that contain R1, R2* and QSM maps and show that the profiles are highly correlated both across subjects and between datasets. Next, we compare profiles of the midbrain that sample ROIs, and show that the profiles along the first two axes sample the midbrain in a way that reliably separates the main structures, i.e., the substantia nigra, the red nucleus, and periaqueductal gray. We further show that age differences which are localized to specific nuclei, are reflected in the profiles. Finally, we generalize the same approach to calculate midbrain profiles on a third clinically relevant dataset using HCP subjects, with metrics such as the diffusion tensor and semi-quantitative data such as T1w/T2w maps. Our results suggest that midbrain profiles, both of quantitative and semi-quantitative estimates are sensitive to the underlying macrostructure of the midbrain. The midbrain profiles are calculated in native space, and rely on simple measurements. We show that it is robust and can be easily expanded to different datasets, and as such we hope that it will be of great use to the community and to the study of the midbrain in particular.


Subject(s)
Magnetic Resonance Imaging , White Matter , Humans , Magnetic Resonance Imaging/methods , Mesencephalon/diagnostic imaging , Substantia Nigra/diagnostic imaging , Red Nucleus
4.
Sci Adv ; 8(28): eabm1971, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35857492

ABSTRACT

Mapping structural spatial change (i.e., gradients) in the striatum is essential for understanding the function of the basal ganglia in both health and disease. We developed a method to identify and quantify gradients of microstructure in the single human brain in vivo. We found spatial gradients in the putamen and caudate nucleus of the striatum that were robust across individuals, clinical conditions, and datasets. By exploiting multiparametric quantitative MRI, we found distinct, spatially dependent, aging-related alterations in water content and iron concentration. Furthermore, we found cortico-striatal microstructural covariation, showing relations between striatal structural gradients and cortical hierarchy. In Parkinson's disease (PD) patients, we found abnormal gradients in the putamen, revealing changes in the posterior putamen that explain patients' dopaminergic loss and motor dysfunction. Our work provides a noninvasive approach for studying the spatially varying, structure-function relationship in the striatum in vivo, in normal aging and PD.


Subject(s)
Parkinson Disease , Aging , Brain Mapping , Caudate Nucleus , Corpus Striatum/diagnostic imaging , Humans , Parkinson Disease/diagnostic imaging , Putamen
5.
Neuroimage ; 256: 119240, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35490913

ABSTRACT

Many diffusion magnetic resonance imaging (dMRI) studies document associations between reading skills and fractional anisotropy (FA) within brain white matter, suggesting that efficient transfer of information across the brain contributes to individual differences in reading. Use of complementary imaging methods can determine if these associations relate to myelin content of white matter tracts. Compared to children born at term (FT), children born preterm (PT) are at risk for reading deficits. We used two MRI methods to calculate associations of reading and white matter properties in FT and PT children. Participants (N=79: 36 FT and 43 PT) were administered the Gray's Oral Reading Test at age 8. We segmented three dorsal (left arcuate and bilateral superior longitudinal fasciculus) and four ventral (bilateral inferior longitudinal fasciculus and bilateral uncinate) tracts and quantified (1) FA from dMRI and (2) R1 from quantitative T1 relaxometry. We examined correlations between reading scores and these metrics along the trajectories of the tracts. Reading positively correlated with FA in segments of left arcuate and bilateral superior longitudinal fasciculi in FT children; no FA associations were found in PT children. Reading positively correlated with R1 in segments of the left superior longitudinal, right uncinate, and left inferior longitudinal fasciculi in PT children; no R1 associations were found in FT children. Birth group significantly moderated the associations of reading and white matter metrics. Myelin content of white matter may contribute to individual differences in PT but not FT children.


Subject(s)
Reading , White Matter , Anisotropy , Brain/diagnostic imaging , Brain/pathology , Child , Diffusion Magnetic Resonance Imaging/methods , Humans , Infant, Newborn , Infant, Premature , White Matter/diagnostic imaging , White Matter/pathology
6.
Commun Biol ; 4(1): 1191, 2021 10 14.
Article in English | MEDLINE | ID: mdl-34650227

ABSTRACT

Development of cortical tissue during infancy is critical for the emergence of typical brain functions in cortex. However, how cortical microstructure develops during infancy remains unknown. We measured the longitudinal development of cortex from birth  to six months of age  using multimodal quantitative imaging of cortical microstructure. Here we show that infants' cortex undergoes profound microstructural tissue growth during the first six months of human life. Comparison of postnatal to prenatal transcriptomic gene expression data demonstrates that myelination and synaptic processes are dominant contributors to this postnatal microstructural tissue growth. Using visual cortex as a model system, we find hierarchical microstructural growth: higher-level visual areas have less mature tissue at birth than earlier visual areas but grow at faster rates. This overturns the prominent view that visual areas that are most mature at birth develop fastest. Together, in vivo, longitudinal, and quantitative measurements, which we validated with ex vivo transcriptomic data, shed light on the rate, sequence, and biological mechanisms of developing cortical systems during early infancy. Importantly, our findings propose a hypothesis that cortical myelination is a key factor in cortical development during early infancy, which has important implications for diagnosis of neurodevelopmental disorders and delays in infants.


Subject(s)
Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Visual Cortex/growth & development , Female , Humans , Infant , Infant, Newborn , Male , Visual Cortex/physiology
7.
Science ; 374(6568): 762-767, 2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34618596

ABSTRACT

Uncovering the architecture of white matter axons is fundamental to the study of brain networks. We developed a method for quantifying axonal orientations at a resolution of ~15 micrometers. This method is based on the common Nissl staining technique for postmortem histological slices. Nissl staining reveals the spatial organization of glial cells along axons. Using structure tensor analysis, we leveraged this patterned organization to uncover local axonal orientation. We used Nissl-based structure tensor analysis to extract fine details of axonal architecture and demonstrated its applicability in multiple datasets of humans and nonhuman primates. Nissl-based structure tensor analysis can be used to compare fine-grained features of axonal architecture across species and is widely applicable to existing datasets.


Subject(s)
Axons/ultrastructure , Brain/cytology , Neuroglia/cytology , White Matter/cytology , Animals , Chlorocebus aethiops , Corpus Callosum/cytology , Diffusion Magnetic Resonance Imaging , Humans , Image Processing, Computer-Assisted , Macaca mulatta , Staining and Labeling
8.
Neuroimage ; 221: 117204, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32745679

ABSTRACT

In developed countries, multiple sclerosis (MS) is the leading cause of non-traumatic neurological disability in young adults. MS is a chronic demyelinating disease of the central nervous system, in which myelin is attacked, changing white matter structure and leaving lesions. The demyelination has a direct effect on white matter conductivity. This effect can be examined in the visual system, where damage is highly prevalent in MS, leading to substantial delays in conduction, commonly measured with visual evoked potentials (VEPs). The structural damage to the visual system in MS is often estimated with MRI measurements in the white matter. Recent developments in quantitative MRI (qMRI) provide improved sensitivity to myelin content and new structural methods allow better modeling of the axonal structure, leading researchers to link white matter microstructure to conduction properties of action potentials along fiber tracts. This study attempts to explain the variance in conduction latencies down the visual pathway using structural measurements of both the retina and the optic radiation (OR). Forty-eight progressive MS patients, participants in a longitudinal stem-cell therapy clinical trial, were included in this study, three and six months post final treatment. Twenty-seven patients had no history of optic neuritis, and were the main focus of this study. All participants underwent conventional MRI scans, as well as diffusion MRI and qMRI sequences to account for white matter microstructure. Optical coherence tomography scans were also obtained, and peripapillary retinal nerve fiber layer (pRNFL) thickness and macular volume measurements were extracted. Finally, latencies of recorded VEPs were estimated. Our results show that in non-optic neuritis progressive MS patients there is a relationship between the VEP latency and both retinal damage and OR lesion load. In addition, we find that qMRI values, sampled along the OR, are also correlated with VEP latency. Finally, we show that combining these parameters using PCA we can explain more than 40% of the inter-subject variance in VEP latency. In conclusion, this study contributes to understanding the relationship between the structural properties and conduction in the visual system in disease. We focus on the visual system, where the conduction latencies can be estimated, but the conclusions could be generalized to other brain systems where the white matter structure can be measured. It also highlights the importance of having multiple parameters when assessing the clinical stages of MS patients, which could have major implications for future studies of other white matter diseases.


Subject(s)
Evoked Potentials, Visual , Magnetic Resonance Imaging , Multiple Sclerosis, Chronic Progressive , Neural Conduction , Retina , Tomography, Optical Coherence , Visual Pathways , White Matter , Adult , Diffusion Magnetic Resonance Imaging , Evoked Potentials, Visual/physiology , Female , Humans , Longitudinal Studies , Male , Middle Aged , Multiple Sclerosis, Chronic Progressive/diagnostic imaging , Multiple Sclerosis, Chronic Progressive/pathology , Multiple Sclerosis, Chronic Progressive/physiopathology , Neural Conduction/physiology , Retina/diagnostic imaging , Retina/pathology , Retina/physiopathology , Visual Pathways/diagnostic imaging , Visual Pathways/pathology , Visual Pathways/physiopathology , White Matter/diagnostic imaging , White Matter/pathology , White Matter/physiopathology
9.
Cerebellum ; 19(6): 771-777, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32642932

ABSTRACT

Reading in children has been associated with microstructural properties of the cerebellar peduncles, the white matter pathways connecting the cerebellum to the cerebrum. In this study, we used two independent neuroimaging modalities to assess which features of the cerebellar peduncles would be associated with reading. Twenty-three 8-year-old children were evaluated on word reading efficiency and imaged using diffusion MRI (dMRI) and quantitative T1 relaxometry (qT1). We segmented the superior (SCP), middle, and inferior cerebellar peduncles and extracted two metrics: fractional anisotropy (FA) from dMRI and R1 from qT1. Tract-FA was significantly correlated with tract-R1 in left and right SCPs (left: rP(21) = .63, right: rP(21) = .76, p ≤ .001) suggesting that FA of these peduncles, at least in part, indexed myelin content. Tract-FA and tract R1 were not correlated in the other cerebellar peduncles. Reading efficiency negatively correlated with tract-FA of the left (rP(21) = - .43, p = .040) and right SCP (rP(21) = - .37, p = .079). Reading efficiency did not correlate with tract-R1 in the SCPs. The negative association of reading efficiency with tract-FA and the lack of association of reading efficiency with tract-R1 implicate properties other than myelin content as relevant to the information flow between the cerebellum and the cerebrum for individual differences in reading skills in children.


Subject(s)
Cerebellum/diagnostic imaging , Cerebellum/physiology , Reading , White Matter/diagnostic imaging , White Matter/physiology , Anisotropy , Child , Female , Humans , Longitudinal Studies , Magnetic Resonance Imaging/methods , Male , Middle Cerebellar Peduncle/diagnostic imaging , Middle Cerebellar Peduncle/physiology
10.
NMR Biomed ; 33(4): e4209, 2020 04.
Article in English | MEDLINE | ID: mdl-31899589

ABSTRACT

Quantitative MRI (qMRI) is a method for the non-invasive study of brain-structure-associated changes expressed with measurable units. The qMRI-derived parameters have been shown to reflect brain tissue composition such as myelin content. Nevertheless, it remains a major challenge to identify and quantify the contributions of specific molecular components to the MRI signal. Here, we describe a phantom system that can be used to evaluate the contribution of membrane lipids to qMRI-derived parameters. We used a hydration-dehydration dry film technique to formulate liposomes that can be used as a model of the bilayer lipid membrane. The liposomes were comprised of the most abundant types of lipid found in the human brain. We then applied clinically available qMRI techniques with adjusted bias corrections in order to test the ability of the phantom system to estimate multiple qMRI parameters such as proton density (PD), T1 , T2 , T2 * and magnetization transfer. In addition, we accurately measured the phantom sample water fraction (normalized PD). A similar protocol was also applied to the human brain in vivo. The phantom system allows for a reliable estimation of qMRI parameters for phantoms composed of various lipid types using a clinical MRI scanner. We also found a comparable reproducibility between the phantom and in vivo human brain qMRI estimations. To conclude, we have successfully created a biologically relevant liposome phantom system whose lipid composition can be fully controlled. Our lipid system and analysis can be used to measure the contributions to qMRI parameters of membrane lipids found in the human brain under scanning conditions that are relevant to in vivo human brain scans. Such a model system can be used to test the contributions of lipidomic changes in normal and pathological brain states.


Subject(s)
Membrane Lipids/chemistry , Phantoms, Imaging , Protons , Water/chemistry , Adult , Diffusion , Humans , Lipids/chemistry , Liposomes , Magnetic Resonance Imaging , Reproducibility of Results , Young Adult
11.
Cereb Cortex Commun ; 1(1): tgaa062, 2020.
Article in English | MEDLINE | ID: mdl-34296125

ABSTRACT

The claustrum is a thin sheet of neurons enclosed by white matter and situated between the insula and the putamen. It is highly interconnected with sensory, frontal, and subcortical regions. The deep location of the claustrum, with its fine structure, has limited the degree to which it could be studied in vivo. Particularly in humans, identifying the claustrum using magnetic resonance imaging (MRI) is extremely challenging, even manually. Therefore, automatic segmentation of the claustrum is an invaluable step toward enabling extensive and reproducible research of the anatomy and function of the human claustrum. In this study, we developed an automatic algorithm for segmenting the human dorsal claustrum in vivo using high-resolution MRI. Using this algorithm, we segmented the dorsal claustrum bilaterally in 1068 subjects of the Human Connectome Project Young Adult dataset, a publicly available high-resolution MRI dataset. We found good agreement between the automatic and manual segmentations performed by 2 observers in 10 subjects. We demonstrate the use of the segmentation in analyzing the covariation of the dorsal claustrum with other brain regions, in terms of macro- and microstructure. We identified several covariance networks associated with the dorsal claustrum. We provide an online repository of 1068 bilateral dorsal claustrum segmentations.

12.
Neuroimage ; 208: 116439, 2020 03.
Article in English | MEDLINE | ID: mdl-31821870

ABSTRACT

The association fibers of the superior longitudinal fasciculus (SLF) connect parietal and frontal cortical regions in the human brain. The SLF comprises of three distinct sub-bundles, each presenting a different anatomical trajectory, and specific functional roles. Nevertheless, in vivo studies of the SLF often consider the entire SLF complex as a single entity. In this work, we suggest a data-driven approach that relies on microstructure measurements for separating SLF-III from the rest of the SLF. We apply the SLF-III separation procedure in three independent datasets using parameters of diffusion MRI (fractional anisotropy), as well as relaxometry-based parameters (T1, T2, T2* and T2-weighted/T1-weighted). We show that the proposed procedure is reproducible across datasets and tractography algorithms. Finally, we suggest that differential crossing with different white-matter tracts is the source of the distinct MRI signatures of SLF-II and SLF-III.


Subject(s)
Magnetic Resonance Imaging/methods , Neuroimaging/methods , White Matter/anatomy & histology , Adult , Datasets as Topic , Diffusion Tensor Imaging/methods , Female , Humans , Male , Middle Aged , White Matter/diagnostic imaging , Young Adult
13.
Brain Struct Funct ; 224(9): 3171-3182, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31520253

ABSTRACT

The superior temporal sulcus (STS) is an important region for speech comprehension. The greater language network is known to exhibit asymmetries in both structure and function, and consistent with that theory are reports of STS structural asymmetry in MRI-based, morphological measures such as mean thickness and sulcal depth. However, it is not known how these individual STS structural asymmetries relate to each other, or how they interact with the broader language asymmetry that manifests in other brain regions. In this study, we assess the interrelations of STS asymmetries in the human brain in vivo, using four independent datasets to validate our findings. For morphological measurements, we identify STS laterality effects consistent between our datasets and with the literature: leftward for surface area, and rightward for sulcal depth and mean thickness. We then add two more measurements of STS asymmetry: in T1, a quantitative index of the tissue's underlying biophysical properties; and in the projections to the STS from the arcuate fasciculus, a left-lateralized white-matter bundle that connects temporal regions (including STS) with frontal regions (including Broca's area). For these two new measurements, we identify no effect for T1 and a leftward effect for arcuate projections. We then test for correlations between these STS asymmetries, and find associations mainly between measurements of the same type (e.g., two morphological measurements). Finally, we ask if STS asymmetry is preferentially related to Broca asymmetry, as these are both important language regions and connected via the arcuate fasciculus. Using a linear model with cross-validation, we find that random regions are as successful as Broca's area in predicting STS, and no indication of a hypothesized leftward asymmetry. We conclude that although these different STS asymmetries are robust across datasets, they are not trivially related to each other, suggesting different biological or imaging sources for different aspects of STS lateralities.


Subject(s)
Language , Temporal Lobe/anatomy & histology , Adolescent , Adult , Aged , Broca Area/anatomy & histology , Broca Area/physiology , Diffusion Magnetic Resonance Imaging , Female , Functional Laterality , Humans , Male , Middle Aged , Neural Pathways/anatomy & histology , Neural Pathways/physiology , Temporal Lobe/physiology , Young Adult
14.
Neuroimage ; 202: 116121, 2019 11 15.
Article in English | MEDLINE | ID: mdl-31472252

ABSTRACT

The vertical occipital fasciculus (VOF) is a white-matter tract that connects the ventral and dorsal visual streams. The precise borders of the VOF have been a matter of dispute since its discovery in the 19th century. The presence of an adjacent vertical pathway, the posterior arcuate fasciculus, makes it especially hard to determine the anterior extent of the VOF. By integrating diffusion MRI tractography with quantitative T1 mapping we found that the vertical streamlines originating in the ventral occipito-temporal cortex show a pattern of lower T1 in more posterior streamlines. We used this pattern to develop an automatic procedure for VOF identification based on a sharp increase in the streamline T1 signature along the posterior-anterior axis. We studied the cortical endpoints of the VOF and their relation to known cytoarchitectonic and functional divisions of the cortex. These results show that multi-modal MRI information, which characterizes local tissue microstructure such as myelination, can be used to delineate white-matter tracts in vivo.


Subject(s)
Diffusion Tensor Imaging/methods , Occipital Lobe/anatomy & histology , White Matter/anatomy & histology , Adolescent , Adult , Aged , Aged, 80 and over , Child , Female , Humans , Male , Middle Aged , Neural Pathways/anatomy & histology , Neural Pathways/diagnostic imaging , Occipital Lobe/diagnostic imaging , White Matter/diagnostic imaging , Young Adult
15.
Nat Commun ; 10(1): 3403, 2019 07 30.
Article in English | MEDLINE | ID: mdl-31363094

ABSTRACT

It is an open question whether aging-related changes throughout the brain are driven by a common factor or result from several distinct molecular mechanisms. Quantitative magnetic resonance imaging (qMRI) provides biophysical parametric measurements allowing for non-invasive mapping of the aging human brain. However, qMRI measurements change in response to both molecular composition and water content. Here, we present a tissue relaxivity approach that disentangles these two tissue components and decodes molecular information from the MRI signal. Our approach enables us to reveal the molecular composition of lipid samples and predict lipidomics measurements of the brain. It produces unique molecular signatures across the brain, which are correlated with specific gene-expression profiles. We uncover region-specific molecular changes associated with brain aging. These changes are independent from other MRI aging markers. Our approach opens the door to a quantitative characterization of the biological sources for aging, that until now was possible only post-mortem.


Subject(s)
Aging/metabolism , Brain/metabolism , Magnetic Resonance Imaging/methods , Water/metabolism , Adult , Aged , Brain/diagnostic imaging , Brain Chemistry , Female , Humans , Lipid Metabolism , Lipids/chemistry , Male , Water/chemistry
16.
Hum Brain Mapp ; 40(13): 3695-3711, 2019 09.
Article in English | MEDLINE | ID: mdl-31106944

ABSTRACT

The arcuate fasciculi are white-matter pathways that connect frontal and temporal lobes in each hemisphere. The arcuate plays a key role in the language network and is believed to be left-lateralized, in line with left hemisphere dominance for language. Measuring the arcuate in vivo requires diffusion magnetic resonance imaging-based tractography, but asymmetry of the in vivo arcuate is not always reliably detected in previous studies. It is unknown how the choice of tractography algorithm, with each method's freedoms, constraints, and vulnerabilities to false-positive and -negative errors, impacts findings of arcuate asymmetry. Here, we identify the arcuate in two independent datasets using a number of tractography strategies and methodological constraints, and assess their impact on estimates of arcuate laterality. We test three tractography methods: a deterministic, a probabilistic, and a tractography-evaluation (LiFE) algorithm. We extract the arcuate from the whole-brain tractogram, and compare it to an arcuate bundle constrained even further by selecting only those streamlines that connect to anatomically relevant cortical regions. We test arcuate macrostructure laterality, and also evaluate microstructure profiles for properties such as fractional anisotropy and quantitative R1. We find that both tractography choice and implementing the cortical constraints substantially impact estimates of all indices of arcuate laterality. Together, these results emphasize the effect of the tractography pipeline on estimates of arcuate laterality in both macrostructure and microstructure.


Subject(s)
Algorithms , Diffusion Tensor Imaging/methods , Diffusion Tensor Imaging/standards , Functional Laterality/physiology , White Matter/anatomy & histology , White Matter/diagnostic imaging , Adolescent , Adult , Datasets as Topic , Female , Humans , Male , Middle Aged , Neural Pathways/anatomy & histology , Neural Pathways/diagnostic imaging , Young Adult
17.
Neuroimage Clin ; 23: 101826, 2019.
Article in English | MEDLINE | ID: mdl-31026624

ABSTRACT

In patients with retinal ganglion cell diseases, recent diffusion tensor imaging (DTI) studies have revealed structural abnormalities in visual white matter tracts such as the optic tract, and optic radiation. However, the microstructural origin of these diffusivity changes is unknown as DTI metrics involve multiple biological factors and do not correlate directly with specific microstructural properties. In contrast, recent quantitative T1 (qT1) mapping methods provide tissue property measurements relatively specific to myelin volume fractions in white matter. This study aims to improve our understanding of microstructural changes in visual white matter tracts following retinal ganglion cell damage in Leber's hereditary optic neuropathy (LHON) patients by combining DTI and qT1 measurements. We collected these measurements from seven LHON patients and twenty age-matched control subjects. For all individuals, we identified the optic tract and the optic radiation using probabilistic tractography, and evaluated diffusivity and qT1 profiles along them. Both diffusivity and qT1 measurements in the optic tract differed significantly between LHON patients and controls. In the optic radiation, these changes were observed in diffusivity but were not evident in qT1 measurements. This suggests that myelin loss may not explain trans-synaptic diffusivity changes in the optic radiation as a consequence of retinal ganglion cell disease.


Subject(s)
Diffusion Magnetic Resonance Imaging/methods , Diffusion Tensor Imaging/methods , Optic Atrophy, Hereditary, Leber/diagnostic imaging , Retinal Ganglion Cells/pathology , Visual Pathways/diagnostic imaging , White Matter/diagnostic imaging , Adult , Humans , Male , Optic Atrophy, Hereditary, Leber/metabolism , Retinal Ganglion Cells/metabolism , Visual Pathways/metabolism , White Matter/metabolism , Young Adult
18.
Neuroimage Clin ; 22: 101756, 2019.
Article in English | MEDLINE | ID: mdl-30901711

ABSTRACT

OBJECTIVE: We combined diffusion MRI (dMRI) with quantitative T1 (qT1) relaxometry in a sample of school-aged children born preterm and full term to determine whether reduced fractional anisotropy (FA) within the corpus callosum of the preterm group could be explained by a reduction in myelin content, as indexed by R1 (1/T1) from qT1 scans. METHODS: 8-year-old children born preterm (n = 29; GA 22-32 weeks) and full term (n = 24) underwent dMRI and qT1 scans. Four subdivisions of the corpus callosum were segmented in individual native space according to cortical projection zones (occipital, temporal, motor and anterior-frontal). Fractional anisotropy (FA) and R1 were quantified along the tract trajectory of each subdivision and compared across two birth groups. RESULTS: Compared to controls, preterm children demonstrated significantly decreased FA in 3 of 4 analyzed corpus callosum subdivisions (temporal, motor, and anterior frontal segments) and decreased R1 in only 2 of 4 corpus callosum subdivisions (temporal and motor segments). FA and RD were significantly associated with R1 within temporal but not anterior frontal subdivisions of the corpus callosum in the term group; RD correlated with R1 in the anterior subdivision in the preterm group only. CONCLUSIONS: Myelin content, as indexed by R1, drives some but not all of the differences in white matter between preterm and term born children. Other factors, such as axonal diameter and directional coherence, likely contributed to FA differences in the anterior frontal segment of the corpus callosum that were not well explained by R1.


Subject(s)
Corpus Callosum/anatomy & histology , Corpus Callosum/diagnostic imaging , Infant, Premature , Magnetic Resonance Imaging/methods , Myelin Sheath , Child , Corpus Callosum/pathology , Diffusion Magnetic Resonance Imaging/methods , Female , Humans , Male
19.
Med Image Anal ; 52: 119-127, 2019 02.
Article in English | MEDLINE | ID: mdl-30529225

ABSTRACT

Quantitative magnetic resonance imaging (qMRI) is a technique for mapping the physical properties of the underlying tissue using several MR images with different contrasts. To overcome subject motion between the acquired images, it is necessary to register the images to a common reference frame. A drawback of registration is the use of interpolation and resampling techniques, which can introduce artifacts into the interpolated data. These artifacts could have unfavorable effects on the accuracy of the estimated tissue's physical properties. Here, we quantified the error of interpolation and resampling on T1-weighted images and studied its effects on the mapping of the longitudinal relaxation time (T1) using variable flip angles. We simulated T1-weighted images and calculated the transformation error resulting from interpolation and resampling. We found that the error is a function of the image contrast (i.e., flip angle) and of the translation and rotation of the image. Furthermore, we found that the error in the T1-weighted images has a substantial effect on the T1 estimation, of the order of 10% of the signal in the brain's gray and white matter. Hence, minimizing the registration error can enable more accurate in vivo modeling of brain microstructure.


Subject(s)
Connectome/methods , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Algorithms , Artifacts , Humans , Motion
20.
Neuroimage ; 181: 645-658, 2018 11 01.
Article in English | MEDLINE | ID: mdl-29936310

ABSTRACT

Diffusion MRI tractography is essential for reconstructing white-matter projections in the living human brain. Yet tractography results miss some projections and falsely identify others. A challenging example is the optic radiation (OR) that connects the thalamus and the primary visual cortex. Here, we tested whether OR tractography can be optimized using quantitative T1 mapping. Based on histology, we proposed that myelin-sensitive T1 values along the OR should remain consistently low compared with adjacent white matter. We found that complementary information from the T1 map allows for increasing the specificity of the reconstructed OR tract by eliminating falsely identified projections. This T1-filtering outperforms other, diffusion-based tractography filters. These results provide evidence that the smooth microstructural signature along the tract can be used as constructive input for tractography. Finally, we demonstrate that this approach can be applied in a case of multiple sclerosis, and generalized to the HCP-available MRI measurements. We conclude that multimodal MRI microstructural information can be used to eliminate spurious tractography results in the case of the OR.


Subject(s)
Diffusion Tensor Imaging/methods , Image Processing, Computer-Assisted/methods , Thalamus/anatomy & histology , Visual Cortex/anatomy & histology , Visual Pathways/anatomy & histology , Adolescent , Adult , Diffusion Tensor Imaging/standards , Female , Humans , Image Processing, Computer-Assisted/standards , Male , Middle Aged , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/pathology , Thalamus/diagnostic imaging , Visual Cortex/diagnostic imaging , Visual Pathways/diagnostic imaging , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...