Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Viruses ; 14(6)2022 06 15.
Article in English | MEDLINE | ID: mdl-35746781

ABSTRACT

Screening of a protein kinase inhibitor library identified SB431542, targeting activin receptor-like kinase 5 (ALK5), as a compound interfering with SARS-CoV-2 replication. Since ALK5 is implicated in transforming growth factor ß (TGF-ß) signaling and regulation of the cellular endoprotease furin, we pursued this research to clarify the role of this protein kinase for SARS-CoV-2 infection. We show that TGF-ß1 induces the expression of furin in a broad spectrum of cells including Huh-7 and Calu-3 that are permissive for SARS-CoV-2. The inhibition of ALK5 by incubation with SB431542 revealed a dose-dependent downregulation of both basal and TGF-ß1 induced furin expression. Furthermore, we demonstrate that the ALK5 inhibitors SB431542 and Vactosertib negatively affect the proteolytic processing of the SARS-CoV-2 Spike protein and significantly reduce spike-mediated cell-cell fusion. This correlated with an inhibitory effect of ALK5 inhibition on the production of infectious SARS-CoV-2. Altogether, our study shows that interference with ALK5 signaling attenuates SARS-CoV-2 infectivity and cell-cell spread via downregulation of furin which is most pronounced upon TGF-ß stimulation. Since a TGF-ß dominated cytokine storm is a hallmark of severe COVID-19, ALK5 inhibitors undergoing clinical trials might represent a potential therapy option for COVID-19.


Subject(s)
COVID-19 , Transforming Growth Factor beta1 , Cell Fusion , Furin , Humans , Protein Serine-Threonine Kinases , Receptor, Transforming Growth Factor-beta Type I , Receptors, Transforming Growth Factor beta/metabolism , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta1/metabolism
2.
Viruses ; 13(9)2021 09 06.
Article in English | MEDLINE | ID: mdl-34578361

ABSTRACT

Cell-free human cytomegalovirus (HCMV) can be inhibited by a soluble form of the cellular HCMV-receptor PDGFRα, resembling neutralization by antibodies. The cell-associated growth of recent HCMV isolates, however, is resistant against antibodies. We investigated whether PDGFRα-derivatives can inhibit this transmission mode. A protein containing the extracellular PDGFRα-domain and 40-mer peptides derived therefrom were tested regarding the inhibition of the cell-associated HCMV strain Merlin-pAL1502, hits were validated with recent isolates, and the most effective peptide was modified to increase its potency. The modified peptide was further analyzed regarding its mode of action on the virion level. While full-length PDGFRα failed to inhibit HCMV isolates, three peptides significantly reduced virus growth. A 30-mer version of the lead peptide (GD30) proved even more effective against the cell-free virus, and this effect was HCMV-specific and depended on the viral glycoprotein O. In cell-associated spread, GD30 reduced both the number of transferred particles and their penetration. This effect was reversible after peptide removal, which allowed the synchronized analysis of particle transfer, showing that two virions per hour were transferred to neighboring cells and one virion was sufficient for infection. In conclusion, PDGFRα-derived peptides are novel inhibitors of the cell-associated spread of HCMV and facilitate the investigation of this transmission mode.


Subject(s)
Cytomegalovirus/drug effects , Peptides/chemistry , Peptides/pharmacology , Receptor, Platelet-Derived Growth Factor alpha/chemistry , Receptor, Platelet-Derived Growth Factor alpha/pharmacology , Cytomegalovirus Infections/virology , Humans , Membrane Glycoproteins/metabolism , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Virion/metabolism , Virus Internalization/drug effects
3.
Proc Biol Sci ; 285(1893): 20182426, 2018 12 19.
Article in English | MEDLINE | ID: mdl-30963892

ABSTRACT

The products of the genes of the major histocompatibility complex (MHC) are known to be drivers of pathogen resistance and sexual selection enhancing offspring genetic diversity. The MHC further influences individual odour types and social communication. However, little is known about the receptors and their volatile ligands that are involved in this type of chemical communication. Here, we have investigated chemosensory receptor genes that ultimately enable females to assess male genes through odour cues. As a model, we used an invasive population of North American raccoons ( Procyon lotor) in Germany. We investigated the effect of two groups of chemosensory receptor genes-trace amine-associated receptors (TAARs) and olfactory receptors (ORs)-on MHC-dependent mate choice. Females with more alleles of the TAAR or OR loci were more likely to choose a male with a diverse MHC. We additionally found that MHC class I genes have a stronger effect on mate choice than the recently reported effect for MHC class II genes, probably because of their immunological relevance for viral resistance. Our study is among the first to show a genetic link between behaviour and chemosensory receptor genes. These results contribute to understanding the link between genetics, olfaction and associated life-history decisions.


Subject(s)
Chemoreceptor Cells/metabolism , Mating Preference, Animal/physiology , Polymorphism, Genetic , Raccoons/physiology , Smell/genetics , Animals , Raccoons/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...