Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Gastroenterology ; 166(3): 437-449, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37995867

ABSTRACT

BACKGROUND & AIMS: RET tyrosine kinase is necessary for enteric nervous system development. Loss-of-function RET mutations cause Hirschsprung disease (HSCR), in which infants are born with aganglionic bowel. Despite surgical correction, patients with HSCR often experience chronic defecatory dysfunction and enterocolitis, suggesting that RET is important after development. To test this hypothesis, we determined the location of postnatal RET and its significance in gastrointestinal (GI) motility. METHODS: RetCFP/+ mice and human transcriptional profiling data were studied to identify the enteric neuronal and epithelial cells that express RET. To determine whether RET regulates gut motility in vivo, genetic, and pharmacologic approaches were used to disrupt RET in all RET-expressing cells, a subset of enteric neurons, or intestinal epithelial cells. RESULTS: Distinct subsets of enteric neurons and enteroendocrine cells expressed RET in the adult intestine. RET disruption in the epithelium, rather than in enteric neurons, slowed GI motility selectively in male mice. RET kinase inhibition phenocopied this effect. Most RET+ epithelial cells were either enterochromaffin cells that release serotonin or L-cells that release peptide YY (PYY) and glucagon-like peptide 1 (GLP-1), both of which can alter motility. RET kinase inhibition exaggerated PYY and GLP-1 release in a nutrient-dependent manner without altering serotonin secretion in mice and human organoids. PYY receptor blockade rescued dysmotility in mice lacking epithelial RET. CONCLUSIONS: RET signaling normally limits nutrient-dependent peptide release from L-cells and this activity is necessary for normal intestinal motility in male mice. These effects could contribute to dysmotility in HSCR, which predominantly affects males, and uncovers a mechanism that could be targeted to treat post-prandial GI dysfunction.


Subject(s)
Enteric Nervous System , Hirschsprung Disease , Infant , Humans , Male , Mice , Animals , Peptide YY , Serotonin , Hirschsprung Disease/genetics , Enteroendocrine Cells , Intestine, Small , Glucagon-Like Peptide 1 , Proto-Oncogene Proteins c-ret/genetics
2.
J Endocr Soc ; 7(9): bvad095, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37538101

ABSTRACT

Context : Chronic high-fat diet (HFD) consumption causes obesity associated with retention of bile acids (BAs) that suppress important regulatory axes, such as the hypothalamic-pituitary-adrenal axis (HPAA). HFD impairs nutrient sensing and energy balance due to a dampening of the HPAA and reduced production and peripheral metabolism of corticosterone (CORT). Objective: We assessed whether proanthocyanidin-rich grape polyphenol (GP) extract can prevent HFD-induced energy imbalance and HPAA dysregulation. Methods: Male C57BL6/J mice were fed HFD or HFD supplemented with 0.5% w/w GPs (HFD-GP) for 17 weeks. Results: GP supplementation reduced body weight gain and liver fat while increasing circadian rhythms of energy expenditure and HPAA-regulating hormones, CORT, leptin, and PYY. GP-induced improvements were accompanied by reduced mRNA levels of Il6, Il1b, and Tnfa in ileal or hepatic tissues and lower cecal abundance of Firmicutes, including known BA metabolizers. GP-supplemented mice had lower concentrations of circulating BAs, including hydrophobic and HPAA-inhibiting BAs, but higher cecal levels of taurine-conjugated BAs antagonistic to farnesoid X receptor (FXR). Compared with HFD-fed mice, GP-supplemented mice had increased mRNA levels of hepatic Cyp7a1 and Cyp27a1, suggesting reduced FXR activation and more BA synthesis. GP-supplemented mice also had reduced hepatic Abcc3 and ileal Ibabp and Ostß, indicative of less BA transfer into enterocytes and circulation. Relative to HFD-fed mice, CORT and BA metabolizing enzymes (Akr1d1 and Srd5a1) were increased, and Hsd11b1 was decreased in GP supplemented mice. Conclusion: GPs may attenuate HFD-induced weight gain by improving hormonal control of the HPAA and inducing a BA profile with less cytotoxicity and HPAA inhibition, but greater FXR antagonism.

3.
J Biomol Struct Dyn ; : 1-14, 2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37340688

ABSTRACT

Bile acids (BAs) act as signaling molecules via their interactions with various nuclear (FXR, VDR, PXR and CAR) and G-protein coupled (TGR5, M3R, S1PR2) BA receptors. Stimulation of these BA receptors influences several processes, including inflammatory responses and glucose and xenobiotic metabolism. BA profiles and BA receptor activity are deregulated in cardiometabolic diseases; however, dietary polyphenols were shown to alter BA profile and signaling in association with improved metabolic phenotypes. We previously reported that supplementing mice with a proanthocyanidin (PAC)-rich grape polyphenol (GP) extract attenuated symptoms of glucose intolerance in association with changes to BA profiles, BA receptor gene expression, and/or downstream markers of BA receptor activity. Exact mechanisms by which polyphenols modulate BA signaling are not known, but some hypotheses include modulation of the BA profile via changes to gut bacteria, or alteration of ligand-availability via BA sequestration. Herein, we used an in silico approach to investigate putative binding affinities of proanthocyanidin B2 (PACB2) and PACB2 metabolites to nuclear and G-protein coupled BA receptors. Molecular docking and dynamics simulations revealed that certain PACB2 metabolites had stable binding affinities to S1PR2, PXR and CAR, comparable to that of known natural and synthetic BA ligands. These findings suggest PACB2 metabolites may be novel ligands of S1PR2, CAR, and PXR receptors.Communicated by Ramaswamy H. Sarma.

4.
Pharmacol Ther ; 248: 108457, 2023 08.
Article in English | MEDLINE | ID: mdl-37268113

ABSTRACT

Beyond their role as emulsifiers of lipophilic compounds, bile acids (BAs) are signaling endocrine molecules that show differential affinity and specificity for a variety of canonical and non-canonical BA receptors. Primary BAs (PBAs) are synthesized in the liver while secondary BAs (SBAs) are gut microbial metabolites of PBA species. PBAs and SBAs signal to BA receptors that regulate downstream pathways of inflammation and energy metabolism. Dysregulation of BA metabolism or signaling has emerged as a feature of chronic disease. Dietary polyphenols are non-nutritive plant-derived compounds associated with decreased risk of metabolic syndrome, type-2 diabetes, hepatobiliary and cardiovascular disease. Evidence suggests that the health promoting effects of dietary polyphenols are linked to their ability to alter the gut microbial community, the BA pool, and BA signaling. In this review we provide an overview of BA metabolism and summarize studies that link the cardiometabolic improvements of dietary polyphenols to their modulation of BA metabolism and signaling pathways, and the gut microbiota. Finally, we discuss approaches and challenges in deciphering cause-effect relationships between dietary polyphenols, BAs, and gut microbes.


Subject(s)
Diabetes Mellitus, Type 2 , Signal Transduction , Humans , Liver , Bile Acids and Salts , Polyphenols/pharmacology
5.
J Biomol Struct Dyn ; 41(23): 14339-14357, 2023.
Article in English | MEDLINE | ID: mdl-36803516

ABSTRACT

The outcome of SARS-CoV-2 infection ranges from asymptomatic to severe COVID-19 and death resulting from an exaggerated immune response termed cytokine storm. Epidemiological data have associated consumption of a high-quality plant-based diet with decreased incidence and severity of COVID-19. Dietary polyphenols and their microbial metabolites (MMs) have anti-viral and anti-inflammatory activities. Autodock Vina and Yasara were used in molecular docking and dynamics studies to investigate potential interactions of 7 parent polyphenols (PPs) and 11 MMs with the α- and Omicron variants of the SARS-CoV-2 spike glycoprotein (SGP), papain-like pro-tease (PLpro) and 3 chymotrypsin-like protease (3CLpro), as well as host inflammatory mediators including complement component 5a (C5a), C5a receptor (C5aR), and C-C chemokine receptor type 5 (CCR5). PPs and MMs interacted to varying degrees with residues on target viral and host inflammatory proteins showing potential as competitive inhibitors. Based on these in silico findings, PPs and MMs may inhibit SARS-CoV-2 infection, replication, and/or modulate host immunity in the gut or periphery. Such inhibition may explain why people that consume a high-quality plant-based diet have less incidence and severity of COVID-19.Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 , Gastrointestinal Microbiome , Humans , Molecular Docking Simulation , SARS-CoV-2 , Inflammation Mediators , Protease Inhibitors
6.
AIMS Microbiol ; 8(4): 544-565, 2022.
Article in English | MEDLINE | ID: mdl-36694591

ABSTRACT

A healthy gastrointestinal tract functions as a highly selective barrier, allowing the absorption of nutrients and metabolites while preventing gut bacteria and other xenobiotic compounds from entering host circulation and tissues. The intestinal epithelium and intestinal mucus provide a physical first line of defense against resident microbes, pathogens and xenotoxic compounds. Prior studies have indicated that the gut microbe Akkermansia muciniphila, a mucin-metabolizer, can stimulate intestinal mucin thickness to improve gut barrier integrity. Grape polyphenol (GP) extracts rich in B-type proanthocyanidin (PAC) compounds have been found to increase the relative abundance of A. muciniphila, suggesting that PACs alter the gut microbiota to support a healthy gut barrier. To further investigate the effect of GPs on the gut barrier and A. muciniphila, male C57BL/6 mice were fed a high-fat diet (HFD) or low-fat diet (LFD) with or without 1% GPs (HFD-GP, LFD-GP) for 12 weeks. Compared to the mice fed unsupplemented diets, GP-supplemented mice showed increased relative abundance of fecal and cecal A. muciniphila, a reduction in total bacteria, a diminished colon mucus layer and increased fecal mucus content. GP supplementation also reduced the presence of goblet cells regardless of dietary fat. Compared to the HFD group, ileal gene expression of lipopolysaccharide (LPS)-binding protein (Lbp), an acute-phase protein that promotes pro-inflammatory cytokine expression, was reduced in the HFD-GP group, suggesting reduced LPS in circulation. Despite depletion of the colonic mucus layer, markers of inflammation (Ifng, Il1b, Tnfa, and Nos2) were similar among the four groups, with the exception that ileal Il6 mRNA levels were lower in the LFD-GP group compared to the LFD group. Our findings suggest that the GP-induced increase in A. muciniphila promotes redistribution of the intestinal mucus layer to the intestinal lumen, and that the GP-induced decrease in total bacteria results in a less inflammatory intestinal milieu.

7.
Front Nutr ; 8: 675267, 2021.
Article in English | MEDLINE | ID: mdl-34195217

ABSTRACT

A Western Diet (WD) low in fiber but high in fats and sugars contributes to obesity and non-alcoholic fatty liver disease (NAFLD). Supplementation with grape polyphenols (GPs) rich in B-type proanthocyanidins (PACs) can attenuate symptoms of cardiometabolic disease and alter the gut microbiota and its metabolites. We hypothesized that GP-mediated metabolic improvements would correlate with altered microbial metabolites such as short chain fatty acids (SCFAs). To more closely mimic a WD, C57BL/6J male mice were fed a low-fiber diet high in sucrose and butterfat along with 20% sucrose water to represent sugary beverages. This WD was supplemented with 1% GPs (WD-GP) to investigate the impact of GPs on energy balance, SCFA profile, and intestinal metabolism. Compared to WD-fed mice, the WD-GP group had higher lean mass along with lower fat mass, body weight, and hepatic steatosis despite consuming more calories from sucrose water. Indirect and direct calorimetry revealed that reduced adiposity in GP-supplemented mice was likely due to their greater energy expenditure, which resulted in lower energy efficiency compared to WD-fed mice. GP-supplemented mice had higher abundance of Akkermansia muciniphila, a gut microbe reported to increase energy expenditure. Short chain fatty acid measurements in colon content revealed that GP-supplemented mice had lower concentrations of butyrate, a major energy substrate of the distal intestine, and reduced valerate, a putrefactive SCFA. GP-supplementation also resulted in a lower acetate:propionate ratio suggesting reduced hepatic lipogenesis. Considering the higher sucrose consumption and reduced butyrate levels in GP-supplemented mice, we hypothesized that enterocytes would metabolize glucose and fructose as a replacement energy source. Ileal mRNA levels of glucose transporter-2 (GLUT2, SLC2A2) were increased indicating higher glucose and fructose uptake. Expression of ketohexokinase (KHK) was increased in ileum tissue suggesting increased fructolysis. A GP-induced increase in intestinal carbohydrate oxidation was supported by: (1) increased gene expression of duodenal pyruvate dehydrogenase (PDH), (2) a decreased ratio of lactate dehydrogenase a (LDHa): LDHb in jejunum and colon tissues, and (3) decreased duodenal and colonic lactate concentrations. These data indicate that GPs protect against WD-induced obesity and hepatic steatosis by diminishing portal delivery of lipogenic butyrate and sugars due to their increased intestinal utilization.

SELECTION OF CITATIONS
SEARCH DETAIL
...