Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 32(8): 13628-13639, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38859328

ABSTRACT

A mid-infrared (mid-IR) porous silicon (PSi) waveguide gas sensor was fabricated. PSi guiding and confinement layers were prepared by electrochemical anodization. Ridge waveguides were patterned using standard i-line photolithography and reactive ion etching. Due to the open pores, light and gas molecules interact in the inside volume, unlike bulk material in which the interaction takes place with the evanescent part of the light. Propagation losses are measured for a wavelength range spanning from λ = 3.9 to 4.55 µm with a value of 11.4 dB/cm at λ = 4.28 µm. The influence of native oxidation and ageing on the propagation losses was investigated. Limit of detection (LoD) of 1000 ppm is obtained with the waveguide sensor at the carbon dioxide (CO2) absorption peak at λ = 4.28 µm.

2.
Opt Lett ; 48(5): 1128-1131, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36857230

ABSTRACT

Climate-active gases, notably carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O), display fundamental absorption bands in the mid-infrared (mid-IR). The detection and monitoring of those gases could be enabled by the development of mid-IR optical sources. Broadband mid-IR on-chip light emission from rare-earth-doped chalcogenide photonic integrated circuits could provide a compact, efficient, and cost-effective gas sensing solution. Mid-IR photoluminescence of dysprosium-doped selenide ridge waveguides obtained under optical pumping at a telecommunication wavelength (∼1.3 µm) is investigated for Dy3+ ion concentrations in the 2500-10,000 ppmw range. CO2 detection at around 4.3 µm is then demonstrated based on absorption of this broadband mid-IR emission.

3.
Sensors (Basel) ; 22(3)2022 Jan 22.
Article in English | MEDLINE | ID: mdl-35161590

ABSTRACT

Porous germanium is a promising material for sensing applications in the mid-infrared wavelength range due to its biocompatibility, large internal surface area, open pores network and widely tunable refractive index, as well as its large spectral transparency window ranging from 2 to 15 µm. Multilayers, such as Bragg reflectors and microcavities, based on porous germanium material, are designed and their optical spectra are simulated to enable SF6 gas-sensing applications at a wavelength of 10.55 µm, which corresponds to its major absorption line. The impact of both the number of successive layers and their respective porosity on the multilayer structures reflectance spectrum is investigated while favoring low layer thicknesses and thus the ease of multilayers manufacturing. The suitability of these microcavities for mid-infrared SF6 gas sensing is then numerically assessed. Using an asymmetrical microcavity porous structure, a sensitivity of 0.01%/ppm and a limit of detection (LOD) around 1 ppb for the SF6 gas detection are calculated. Thanks to both the porous nature allowing gases to easily infiltrate the overall structure and Ge mid-infrared optical properties, a theoretical detection limit nearly 1000 times lower than the current state of the art is simulated.

SELECTION OF CITATIONS
SEARCH DETAIL
...