Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 624(7991): 333-342, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38092915

ABSTRACT

The function of the mammalian brain relies upon the specification and spatial positioning of diversely specialized cell types. Yet, the molecular identities of the cell types and their positions within individual anatomical structures remain incompletely known. To construct a comprehensive atlas of cell types in each brain structure, we paired high-throughput single-nucleus RNA sequencing with Slide-seq1,2-a recently developed spatial transcriptomics method with near-cellular resolution-across the entire mouse brain. Integration of these datasets revealed the cell type composition of each neuroanatomical structure. Cell type diversity was found to be remarkably high in the midbrain, hindbrain and hypothalamus, with most clusters requiring a combination of at least three discrete gene expression markers to uniquely define them. Using these data, we developed a framework for genetically accessing each cell type, comprehensively characterized neuropeptide and neurotransmitter signalling, elucidated region-specific specializations in activity-regulated gene expression and ascertained the heritability enrichment of neurological and psychiatric phenotypes. These data, available as an online resource ( www.BrainCellData.org ), should find diverse applications across neuroscience, including the construction of new genetic tools and the prioritization of specific cell types and circuits in the study of brain diseases.


Subject(s)
Brain , Gene Expression Profiling , Animals , Mice , Brain/anatomy & histology , Brain/cytology , Brain/metabolism , Gene Expression Profiling/methods , High-Throughput Nucleotide Sequencing , Hypothalamus/cytology , Hypothalamus/metabolism , Mesencephalon/cytology , Mesencephalon/metabolism , Neuropeptides/metabolism , Neurotransmitter Agents/metabolism , Phenotype , Rhombencephalon/cytology , Rhombencephalon/metabolism , Single-Cell Gene Expression Analysis , Transcriptome/genetics
2.
bioRxiv ; 2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36945580

ABSTRACT

The function of the mammalian brain relies upon the specification and spatial positioning of diversely specialized cell types. Yet, the molecular identities of the cell types, and their positions within individual anatomical structures, remain incompletely known. To construct a comprehensive atlas of cell types in each brain structure, we paired high-throughput single-nucleus RNA-seq with Slide-seq-a recently developed spatial transcriptomics method with near-cellular resolution-across the entire mouse brain. Integration of these datasets revealed the cell type composition of each neuroanatomical structure. Cell type diversity was found to be remarkably high in the midbrain, hindbrain, and hypothalamus, with most clusters requiring a combination of at least three discrete gene expression markers to uniquely define them. Using these data, we developed a framework for genetically accessing each cell type, comprehensively characterized neuropeptide and neurotransmitter signaling, elucidated region-specific specializations in activity-regulated gene expression, and ascertained the heritability enrichment of neurological and psychiatric phenotypes. These data, available as an online resource (BrainCellData.org) should find diverse applications across neuroscience, including the construction of new genetic tools, and the prioritization of specific cell types and circuits in the study of brain diseases.

3.
Neuropsychopharmacology ; 43(11): 2180-2189, 2018 10.
Article in English | MEDLINE | ID: mdl-30082890

ABSTRACT

Deficits in goal-directed motivation represent a debilitating symptom for many patients with schizophrenia. Impairments in motivation can arise from deficits in processing information about effort and or value, disrupting effective cost-benefit decision making. We have previously shown that upregulated dopamine D2 receptor expression within the striatum (D2R-OE mice) decreases goal-directed motivation. Here, we determine the behavioral and neurochemical mechanisms behind this deficit. Female D2R-OE mice were tested in several behavioral paradigms including recently developed tasks that independently assess the impact of Value or Effort manipulations on cost-benefit decision making. In vivo microdialysis was used to measure extracellular dopamine in the striatum during behavior. In a value-based choice task, D2R-OE mice show normal sensitivity to changes in reward value and used reward value to guide their actions. In an effort-based choice task, D2R-OE mice evaluate the cost of increasing the number of responses greater relative to the effort cost of longer duration responses compared to controls. This shift away from choosing to repeatedly execute a response is accompanied by a dampening of extracellular dopamine in the striatum during goal-directed behavior. In the ventral striatum, extracellular dopamine level negatively correlates with response cost in controls, but this relationship is lost in D2R-OE mice. These results show that D2R signaling in the striatum, as observed in some patients with schizophrenia, alters the relationship between effort expenditure and extracellular dopamine. This dysregulation produces motivation deficits that are specific to effort but not value-based decision making, paralleling the effort-based motivational deficits observed in schizophrenia.


Subject(s)
Corpus Striatum/metabolism , Cost-Benefit Analysis/methods , Decision Making/physiology , Receptors, Dopamine D2/biosynthesis , Reward , Animals , Conditioning, Operant/physiology , Dopamine/metabolism , Female , Mice , Mice, Transgenic
4.
Acta Neuropathol Commun ; 5(1): 61, 2017 08 14.
Article in English | MEDLINE | ID: mdl-28807028

ABSTRACT

Spatiotemporal tau pathology progression is regarded as highly stereotyped within each type of degenerative condition. For instance, AD has a progression of tau pathology consistently beginning in the entorhinal cortex, the locus coeruleus, and other nearby noradrenergic brainstem nuclei, before spreading to the rest of the limbic system as well as the cingulate and retrosplenial cortices. Proposed explanations for the consistent spatial patterns of tau pathology progression, as well as for why certain regions are selectively vulnerable to exhibiting pathology over the course of disease generally focus on transsynaptic spread proceeding via the brain's anatomic connectivity network in a cell-independent manner or on cell-intrinsic properties that might render some cell populations or regions uniquely vulnerable. We test connectivity based explanations of spatiotemporal tau pathology progression and regional vulnerability against cell-intrinsic explanation, using regional gene expression profiles as a proxy. We find that across both exogenously seeded and non-seeded tauopathic mouse models, the connectivity network provides a better explanation than regional gene expression profiles, even when such profiles are limited to specific sets of tau risk-related genes only. Our results suggest that, regardless of the location of pathology initiation, tau pathology progression is well characterized by a model positing entirely cell-type and molecular environment independent transsynaptic spread via the mouse brain's connectivity network. These results further suggest that regional vulnerability to tau pathology is mainly governed by connectivity with regions already exhibiting pathology, rather than by cell-intrinsic factors.


Subject(s)
Brain/pathology , Brain/physiopathology , Models, Neurological , Tauopathies/pathology , Tauopathies/physiopathology , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Connectome , Disease Models, Animal , Disease Progression , Gene Expression , Humans , Linear Models , Mice, Inbred C57BL , Mice, Transgenic , Models, Genetic , Multivariate Analysis , Mutation , Neural Pathways/pathology , Neural Pathways/physiopathology , Transcriptome , tau Proteins/genetics , tau Proteins/metabolism
5.
Front Neurol ; 8: 692, 2017.
Article in English | MEDLINE | ID: mdl-29312121

ABSTRACT

Several neurodegenerative disorders including Alzheimer's disease (AD), frontotemporal dementia (FTD), Parkinson's disease (PD), amyotrophic lateral sclerosis, and Huntington's disease report aggregation and transmission of pathogenic proteins between cells. The topography of these diseases in the human brain also, therefore, displays a well-characterized and stereotyped regional pattern, and a stereotyped progression over time. This is most commonly true for AD and other dementias characterized by hallmark misfolded tau or alpha-synuclein pathology. Both tau and synuclein appear to propagate within brain circuits using a shared mechanism. The most canonical synucleopathy is PD; however, much less studied is a rare disorder called progressive supranuclear palsy (PSP). The hallmark pathology and atrophy in PSP are, therefore, also highly stereotyped: initially appearing in the striatum, followed by its neighbors and connected cortical areas. In this study, we explore two mechanistic aspects hitherto unknown about the canonical network diffusion model (NDM) of spread: (a) whether the NDM can apply to other common degenerative pathologies, specifically PSP, and (b) whether the directionality of spread is important in explaining empirical data. Our results on PSP reveal two important findings: first, that PSP is amenable to the connectome-based ND modeling in the same way as previously applied to AD and FTD and, second, that the NDM fit with empirical data are significantly enhanced by using the directional rather than the non-directional form of the human connectome. Specifically, we show that both the anterograde model of transmission (some to axonal terminal) and retrograde mode explain PSP topography more accurately than non-directional transmission. Collectively, these data show that the intrinsic architecture of the structural network mediates disease spread in PSP, most likely via a process of trans-neuronal transmission. These intriguing results have several ramifications for future studies.

6.
Front Neurol ; 8: 653, 2017.
Article in English | MEDLINE | ID: mdl-29326640

ABSTRACT

While the spread of some neurodegenerative disease-associated proteinopathies, such as tau and α-synuclein, is well studied and clearly implicates transsynaptic pathology transmission, research into the progressive spread of amyloid-ß pathology has been less clear. In fact, prior analyses of transregional amyloid-ß pathology spread have implicated both transsynaptic and other intracellular- as well as extracellular-based transmission mechanisms. We therefore conducted the current meta-analytic analysis to help assess whether spatiotemporal amyloid-ß pathology development patterns in mouse models, where regional proteinopathy is more directly characterizable than in patients, better fit with transsynaptic- or extracellular-based theories of pathology spread. We find that, consistently across the datasets used in this study, spatiotemporal amyloid-ß pathology patterns are more consistent with extracellular-based explanations of pathology spread. Furthermore, we find that regional levels of amyloid precursor protein in a mouse model are also better correlated with expected pathology patterns based on extracellular, rather than intracellular or transsynaptic spread.

7.
Psychopharmacology (Berl) ; 233(4): 615-24, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26558617

ABSTRACT

RATIONALE: Impaired goal-directed motivation represents a debilitating class of symptoms common to psychological disorders including schizophrenia and some affective disorders. Despite the known negative impact of impaired motivation, there are currently no effective pharmacological interventions to treat these symptoms. OBJECTIVES: Here, we evaluate the effectiveness of the serotonin 2C (5-HT2C) receptor selective ligand, SB242084, as a potential pharmacological intervention for enhancing goal-directed motivation in mice. The studies were designed to identify not only efficacy but also the specific motivational processes that were affected by the drug treatment. METHODS: We tested subjects following treatment with SB242084 (0.75 mg/kg) in several operant lever pressing assays including the following: a progressive ratio (PR) schedule of reinforcement, an effort-based choice task, a progressive hold down task (PHD), and various food intake tests. RESULTS: Acute SB242084 treatment leads to an increase in instrumental behavior. Using a battery of behavioral tasks, we demonstrate that the major effect of SB242084 is an increase in the amount of responses and duration of effort that subjects will make for food rewards. This enhancement of behavior is not the result of non-specific hyperactivity or arousal nor is it due to changes in food consumption. CONCLUSIONS: Because of this specificity of action, we suggest that the 5-HT2C receptor warrants further attention as a novel therapeutic target for treating pathological impairments in goal-directed motivation.


Subject(s)
Aminopyridines/pharmacology , Choice Behavior/drug effects , Choice Behavior/physiology , Goals , Indoles/pharmacology , Receptor, Serotonin, 5-HT2C/physiology , Serotonin 5-HT2 Receptor Antagonists/pharmacology , Animals , Dose-Response Relationship, Drug , Eating/drug effects , Eating/physiology , Female , Male , Mice , Mice, Inbred C57BL , Motivation/drug effects , Motivation/physiology , Reward
8.
Behav Neurosci ; 129(3): 269-80, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26030428

ABSTRACT

Motivation serves 2 important functions: It guides actions to be goal-directed, and it provides the energy and vigor required to perform the work necessary to meet those goals. Dissociating these 2 processes with existing behavioral assays has been a challenge. In this article, we report a novel experimental strategy to distinguish the 2 processes in mice. First, we characterize a novel motivation assay in which animals must hold down a lever for progressively longer intervals to earn each subsequent reward; we call this the progressive hold-down (PHD) task. We find that performance on the PHD task is sensitive to both food deprivation level and reward value. Next, we use a dose of methamphetamine (METH) 1.0 mg/kg, to evaluate behavior in both the progressive ratio (PR) and PHD tasks. Treatment with METH leads to more persistent lever pressing for food rewards in the PR. In the PHD task, we found that METH increased arousal, which leads to numerous bouts of hyperactive responding but neither increases nor impairs goal-directed action. The results demonstrate that these tools enable a more precise understanding of the underlying processes being altered in manipulations that alter motivated behavior.


Subject(s)
Arousal , Goals , Motivation , Reinforcement Schedule , Animals , Arousal/drug effects , Central Nervous System Stimulants/pharmacology , Female , Food Deprivation , Methamphetamine/pharmacology , Mice, 129 Strain , Mice, Inbred C57BL , Motivation/drug effects , Motor Activity/drug effects , Neuropsychological Tests , Reward
SELECTION OF CITATIONS
SEARCH DETAIL
...