Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Biol ; 225(6)2022 03 15.
Article in English | MEDLINE | ID: mdl-35213895

ABSTRACT

As the sensory systems of vertebrates develop prenatally, embryos perceive many environmental stimuli that can influence the ontogeny of their behaviour. Whether the nature and intensity of prenatal stimuli affect this ontogeny differently remains to be investigated. In this context, this study aimed to analyse the effects of prenatal auditory stimulation (natural stimulation, NS; predator vocalisations or artificial stimulation, AS; metallic sounds) on the subsequent behaviour of young Japanese quail (Coturnix coturnix japonica). For this, behavioural variables recorded during ethological tests evaluating emotional and social reactivity were analysed using a principal component analysis. This analysis revealed significant differences between the behavioural profile of stimulated chicks and that of non-exposed chicks. Indeed, chicks exposed to NS expressed more intense emotional responses in fearful situations, but less neophobia when exposed to a novel environment or object, whereas chicks exposed to AS appeared more sensitive to social isolation. Our results show that the acoustic environment of embryos can influence the way young birds subsequently interact with their social and physical environment after hatching, and face challenges in changing living conditions.


Subject(s)
Coturnix , Vitamins , Animals , Chickens , Ethology , Female , Social Isolation
2.
Front Psychol ; 12: 750944, 2021.
Article in English | MEDLINE | ID: mdl-34675855

ABSTRACT

A recent body of research has emerged regarding the interactions between olfaction and other sensory channels to process social information. The current review examines the influence of body odors on face perception, a core component of human social cognition. First, we review studies reporting how body odors interact with the perception of invariant facial information (i.e., identity, sex, attractiveness, trustworthiness, and dominance). Although we mainly focus on the influence of body odors based on axillary odor, we also review findings about specific steroids present in axillary sweat (i.e., androstenone, androstenol, androstadienone, and estratetraenol). We next survey the literature showing body odor influences on the perception of transient face properties, notably in discussing the role of body odors in facilitating or hindering the perception of emotional facial expression, in relation to competing frameworks of emotions. Finally, we discuss the developmental origins of these olfaction-to-vision influences, as an emerging literature indicates that odor cues strongly influence face perception in infants. Body odors with a high social relevance such as the odor emanating from the mother have a widespread influence on various aspects of face perception in infancy, including categorization of faces among other objects, face scanning behavior, or facial expression perception. We conclude by suggesting that the weight of olfaction might be especially strong in infancy, shaping social perception, especially in slow-maturing senses such as vision, and that this early tutoring function of olfaction spans all developmental stages to disambiguate a complex social environment by conveying key information for social interactions until adulthood.

3.
Am J Hum Biol ; 33(5): e23521, 2021 09.
Article in English | MEDLINE | ID: mdl-33151021

ABSTRACT

OBJECTIVES: Colostrum is the initial milk secretion which ingestion by neonates warrants their adaptive start in life. Colostrum is accordingly expected to be attractive to newborns. The present study aims to assess whether colostrum is olfactorily attractive for 2-day-old newborns when presented against mature milk or a control. METHODS: The head-orientation of waking newborns was videotaped in three experiments pairing the odors of: (a) colostrum (sampled on postpartum day 2, not from own mother) and mature milk (sampled on average on postpartum day 32, not from own mother) (n tested newborns = 15); (b) Colostrum and control (water; n = 9); and (c) Mature milk and control (n = 13). RESULTS: When facing the odors of colostrum and mature milk, the infants turned their nose significantly longer toward former (32.8 vs 17.7% of a 120-s test). When exposed to colostrum against the control, they responded in favor of colostrum (32.9 vs 16.6%). Finally, when the odor of mature milk was presented against the control, their response appeared undifferentiated (26.7 vs 28.6%). CONCLUSIONS: These results indicate that human newborns can olfactorily differentiate conspecific lacteal fluids sampled at different lactation stages. They prefer the odor of the mammary secretion - colostrum - collected at the lactation stage that best matches the postpartum age of their own mother. These results are discussed in the context of the earliest mother-infant chemo-communication. Coinciding maternal emission and offspring reception of chemosignals conveyed in colostrum may be part of the sensory precursors of attunement between mothers and infants.


Subject(s)
Breast Feeding , Colostrum/chemistry , Infant, Newborn/physiology , Milk, Human/chemistry , Olfactory Perception , Humans
4.
Learn Behav ; 48(4): 401-410, 2020 12.
Article in English | MEDLINE | ID: mdl-32221844

ABSTRACT

Predation can be a very strong selective pressure on prey. Many studies have shown the existence of innate anti-predator responses, mostly in the early developmental stages of juvenile vertebrates. Learning to recognize predators is another possible defensive resource, but such a method involves a high death risk. There is evidence that prenatal learning exists in animals but few studies have explicitly tested for embryonic learning. The aim of this study was to test innate and learned predator recognition in cuttlefish embryos. For this, naïve embryos were exposed to chemical and visual cues emanating from predators, non-predators, and ink. Their response was assessed by measuring their ventilation rate (VR). We first show that VR decreased in response to both visual and chemical predatory cues and ink but not to non-predatory cues. Second, we show that when non-predatory cues (visual or chemical) are paired with predatory cues or ink for several days, embryonic VR significantly decreased. Such a response is likely adaptive, especially in a translucent egg, since it results in reduced movement and hence may lower the risk of detection by visual predators. This freezing-like behavior may also reduce the bioelectric field, thus lessening the predation risk by non-visual foragers. Our results report that cuttlefish embryos had an innate capacity to differentiate between harmless and harmful chemical and visual cues. They were also capable of learning to respond to harmless cues when they were paired with danger (predator or ink) based on conditioning. The combination of these behavioral mechanisms is an example of the early adaptability of cephalopods. Such behavioral plasticity may give the newly hatched cuttlefish a selective advantage when dealing with either known or unfamiliar threats. Nevertheless, more experiments are needed to test the efficiency of the embryos' response faced with known or new predators.


Subject(s)
Decapodiformes , Learning , Animals , Cues , Predatory Behavior , Recognition, Psychology
5.
Dev Psychobiol ; 61(7): 1014-1021, 2019 11.
Article in English | MEDLINE | ID: mdl-31172508

ABSTRACT

Embryos perceive environmental stimuli, thanks to their almost mature sensory systems. In cuttlefish, the embryonic development of Sepia officinalis and Sepia pharaonis is similar but the egg capsule transparency is different. S. officinalis' eggs are black (ink), which provide protection from predators. Conversely, those of S. pharaonis are translucent. The aim of this study was to test the visual and chemosensory perception abilities of these two cuttlefish embryos by observation of the ventilation rate (VR) before and after stimulation. Our results show that S. pharaonis responds to light at stage 22 and S. officinalis at stage 24. Conversely, S. pharaonis responds to predator odor at stage 23 and S. officinalis at stage 22. Both species are able to respond to these stimuli before hatching but do not have the same developmental schedule. Neither are the responses of the two cuttlefish exactly the same. In S. officinalis, VR increases after stimulations. In S. pharaonis, VR increases after light stimulation and decreases following the odor stimulation after stage 25. This result could reveal an ability to recognize stimuli at stage 25. The decrease could be identified as freezing-like behavior which would be more adaptive than an increase, since the embryos are visible.


Subject(s)
Behavior, Animal/physiology , Embryonic Development/physiology , Olfactory Perception/physiology , Respiratory Rate/physiology , Sepia/physiology , Visual Perception/physiology , Animals , Species Specificity
6.
Front Physiol ; 8: 981, 2017.
Article in English | MEDLINE | ID: mdl-29249984

ABSTRACT

Stress experienced during prenatal development-either applied to reproducing females (maternal stress), directly to developing offspring (embryonic stress) or in combination-is associated with a range of post-natal behavioral effects in numerous organisms. We conducted an experiment to discern if maternal and embryonic stressors affect the behavior of hatchlings of the cuttlefish Sepia officinalis, a species with features that allow for the examination of these stress types in isolation. Separating the impact of stress transmitted through the mother vs. stress experienced by the embryo itself will help clarify the behavioral findings in viviparous species for which it is impossible to disentangle these effects. We also compared the effect of a naturally-occurring (predator cue) and an "artificial" (bright, randomly-occurring LED light) embryonic stressor. This allowed us to test the hypothesis that a threat commonly faced by a species (natural threat) would be met with a genetically-programmed and adaptive response while a novel one would confound innate defense mechanisms and lead to maladaptive effects. We found that the maternal stressor was associated with significant differences in body patterning and activity patterns. By contrast, embryonic exposure to stressors increased the proportion of individuals that pursued prey. From these results, it appears that in cuttlefish, maternal and embryonic stressors affect different post-natal behavior in offspring. In addition, the effect of the artificial stressor suggests that organisms can sometimes react adaptively to a stressor even if it is not one that has been encountered during the evolutionary history of the species.

7.
Front Physiol ; 8: 402, 2017.
Article in English | MEDLINE | ID: mdl-28659822

ABSTRACT

Cuttlefish are highly visual animals, a fact reflected in the large size of their eyes and visual-processing centers of their brain. Adults detect their prey visually, navigate using visual cues such as landmarks or the e-vector of polarized light and display intense visual patterns during mating and agonistic encounters. Although much is known about the visual system in adult cuttlefish, few studies have investigated its development and that of visually-guided behavior in juveniles. This review summarizes the results of studies of visual development in embryos and young juveniles. The visual system is the last to develop, as in vertebrates, and is functional before hatching. Indeed, embryonic exposure to prey, shelters or complex background alters postembryonic behavior. Visual acuity and lateralization, and polarization sensitivity improve throughout the first months after hatching. The production of body patterning in juveniles is not the simple stimulus-response process commonly presented in the literature. Rather, it likely requires the complex integration of visual information, and is subject to inter-individual differences. Though the focus of this review is vision in cuttlefish, it is important to note that other senses, particularly sensitivity to vibration and to waterborne chemical signals, also play a role in behavior. Considering the multimodal sensory dimensions of natural stimuli and their integration and processing by individuals offer new exciting avenues of future inquiry.

8.
Dev Psychobiol ; 59(2): 145-160, 2017 03.
Article in English | MEDLINE | ID: mdl-27714785

ABSTRACT

Though a mollusc, the cuttlefish Sepia officinalis possesses a sophisticated brain, advanced sensory systems, and a large behavioral repertoire. Cuttlefish provide a unique perspective on animal behavior due to their phylogenic distance from more traditional (vertebrate) models. S. officinalis is well-suited to addressing questions of behavioral ontogeny. As embryos, they can perceive and learn from their environment and experience no direct parental care. A marked progression in learning and behavior is observed during late embryonic and early juvenile development. This improvement is concomitant with expansion and maturation of the vertical lobe, the cephalopod analog of the mammalian hippocampus. This review synthesizes existing knowledge regarding embryonic and juvenile development in this species in an effort to better understand cuttlefish behavior and animal behavior in general. It will serve as a guide to future researchers and encourage greater awareness of the utility of this species to behavioral science.


Subject(s)
Behavior, Animal/physiology , Embryo, Nonmammalian/physiology , Learning/physiology , Sepia/physiology , Animals , Sepia/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...