ABSTRACT
Western hemisphere goats have European, African and Central Asian origins, and some local or rare breeds are reported to be adapted to their environments and economically important. By-in-large these genetic resources have not been quantified. Using 50 K SNP genotypes of 244 animals from 12 goat populations in United States, Costa Rica, Brazil and Argentina, we evaluated the genetic diversity, population structure and selective sweeps documenting goat migration to the "New World". Our findings suggest the concept of breed, particularly among "locally adapted" breeds, is not a meaningful way to characterize goat populations. The USA Spanish goats were found to be an important genetic reservoir, sharing genomic composition with the wild ancestor and with specialized breeds (e.g. Angora, Lamancha and Saanen). Results suggest goats in the Americas have substantial genetic diversity to use in selection and promote environmental adaptation or product driven specialization. These findings highlight the importance of maintaining goat conservation programs and suggest an awaiting reservoir of genetic diversity for breeding and research while simultaneously discarding concerns about breed designations.
Subject(s)
Goats/classification , Goats/genetics , Polymorphism, Single Nucleotide , Adaptation, Psychological , Animals , Argentina , Brazil , Breeding , Costa Rica , Genetics, Population , Phylogeny , Population Dynamics , Selection, Genetic , United StatesABSTRACT
BACKGROUND: Peroxisome proliferator-activated receptor gamma (PPARG), CCAAT/enhancer binding protein alpha (CEBPA) and retinoid X receptor alpha (RXRA) are nuclear transcription factors that play important roles in regulation of adipogenesis and fat deposition. The objectives of this study were to characterise the variability of these three candidate genes in a mixed sample panel composed of several cattle breeds with different meat quality, validate single nucleotide polymorphisms (SNPs) in a local crossbred population (Angus - Hereford - Limousin) and evaluate their effects on meat quality traits (backfat thickness, intramuscular fat content and fatty acid composition), supporting the association tests with bioinformatic predictive studies. RESULTS: Globally, nine SNPs were detected in the PPARG and CEBPA genes within our mixed panel, including a novel SNP in the latter. Three of these nine, along with seven other SNPs selected from the Single Nucleotide Polymorphism database (SNPdb), including SNPs in the RXRA gene, were validated in the crossbred population (N = 260). After validation, five of these SNPs were evaluated for genotype effects on fatty acid content and composition. Significant effects were observed on backfat thickness and different fatty acid contents (P < 0.05). Some of these SNPs caused slight differences in mRNA structure stability and/or putative binding sites for proteins. CONCLUSIONS: PPARG and CEBPA showed low to moderate variability in our sample panel. Variations in these genes, along with RXRA, may explain part of the genetic variation in fat content and composition. Our results may contribute to knowledge about genetic variation in meat quality traits in cattle and should be evaluated in larger independent populations.
ABSTRACT
LIPE is an intracellular neutral lipase, which is capable of hydrolyzing a variety of esters and plays a key role in the mobilization of fatty acids from diacylglycerols. The objectives of this study were to characterize the genetic polymorphism of bovine LIPE gene and to evaluate the possible association between three SNPs in the coding regions of this gene with the fatty acid composition of meat in a cattle population. Forty-three unrelated animals from different cattle breeds were re-sequenced and 21 SNPs were detected over approximately 2600 bp, five of these SNPs were novel. Three SNPs were selected, on the basis of evolutionary conservation, to perform validation and association studies in a crossbred cattle population. Our results may suggest a possible association of SNP1 with contents of oleic acid and total monounsaturated fatty acids (p < 0.01), and SNP2 and SNP3 with Heneicosylic acid content (p < 0.01), may be helpful to improve the quality of meat and improve health.
ABSTRACT
The influence of cytoplasmic inheritance on birth and weaning weight was evaluated in an experimental Hereford herd. Data on 1,720 records for birth and weaning weights from calves born between 1963 and 2002 were studied. Variance components were estimated using MTDFREML procedures and an animal model was fitted for each trait. Direct and maternal additive effects and permanent environment and maternal lineage effects were treated as random, while year and month of birth, age of dam and sex of the calf were treated as fixed. Identification of maternal lineages was based on pedigree information. The contribution to phenotypic variance of cytoplasmic lineages defined by pedigree information was negligible for both traits. Mitochondrial genotypes of cows present in the herd in 2002 were analyzed by single strand conformation polymorphism (SSCP) analysis. Only five different genotypes were identified among 23 maternal lineages. All the animals with records were assigned to maternal genotypes based on pedigree information. The statistical analysis was repeated, removing maternal lineage from the model and including mitochondrial genotype as a fixed effect. No evidence of genotype effects was detected. These results suggest a negligible effect of the mitochondrial genome on the preweaning traits of this Hereford herd.