Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Blood Adv ; 4(19): 4823-4833, 2020 10 13.
Article in English | MEDLINE | ID: mdl-33027529

ABSTRACT

Despite major advances in the treatment of patients with acute lymphoblastic leukemia in the last decades, refractory and/or relapsed disease remains a clinical challenge, and relapsed leukemia patients have an exceedingly dismal prognosis. Dysregulation of apoptotic cell death pathways is a leading cause of drug resistance; thus, alternative cell death mechanisms, such as necroptosis, represent an appealing target for the treatment of high-risk malignancies. We and other investigators have shown that activation of receptor interacting protein kinase 1 (RIP1)-dependent apoptosis and necroptosis by second mitochondria derived activator of caspase mimetics (SMs) is an attractive antileukemic strategy not currently exploited by standard chemotherapy. However, the underlying molecular mechanisms that determine sensitivity to SMs have remained elusive. We show that tumor necrosis factor receptor 2 (TNFR2) messenger RNA expression correlates with sensitivity to SMs in primary human leukemia. Functional genetic experiments using clustered regularly interspaced short palindromic repeats/Cas9 demonstrate that TNFR2 and TNFR1, but not the ligand TNF-α, are essential for the response to SMs, revealing a ligand-independent interplay between TNFR1 and TNFR2 in the induction of RIP1-dependent cell death. Further potential TNFR ligands, such as lymphotoxins, were not required for SM sensitivity. Instead, TNFR2 promotes the formation of a RIP1/TNFR1-containing death signaling complex that induces RIP1 phosphorylation and RIP1-dependent apoptosis and necroptosis. Our data reveal an alternative paradigm for TNFR2 function in cell death signaling and provide a rationale to develop strategies for the identification of leukemias with vulnerability to RIP1-dependent cell death for tailored therapeutic interventions.


Subject(s)
Leukemia , Receptors, Tumor Necrosis Factor, Type II , Apoptosis , Caspases , Humans , Leukemia/drug therapy , Leukemia/genetics , Necrosis , Nuclear Pore Complex Proteins , RNA-Binding Proteins , Receptors, Tumor Necrosis Factor, Type II/genetics
2.
Blood Cancer J ; 10(6): 72, 2020 06 26.
Article in English | MEDLINE | ID: mdl-32591499

ABSTRACT

Despite rapid progress in genomic profiling in acute lymphoblastic leukemia (ALL), identification of actionable targets and prediction of response to drugs remains challenging. To identify specific vulnerabilities in ALL, we performed a drug screen using primary human ALL samples cultured in a model of the bone marrow microenvironment combined with high content image analysis. Among the 2487 FDA-approved compounds tested, anthelmintic agents of the class of macrocyclic lactones exhibited potent anti-leukemia activity, similar to the already known anti-leukemia agents currently used in induction chemotherapy. Ex vivo validation in 55 primary ALL samples of both precursor B cell and T-ALL including refractory relapse cases confirmed strong anti-leukemia activity with IC50 values in the low micromolar range. Anthelmintic agents increased intracellular chloride levels in primary leukemia cells, inducing mitochondrial outer membrane depolarization and cell death. Supporting the notion that simultaneously targeting cell death machineries at different angles may enhance the cell death response, combination of anthelmintic agents with the BCL-2 antagonist navitoclax or with the chemotherapeutic agent dexamethasone showed synergistic activity in primary ALL. These data reveal anti-leukemia activity of anthelmintic agents and support exploiting drug repurposing strategies to identify so far unrecognized anti-cancer agents with potential to eradicate even refractory leukemia.


Subject(s)
Anthelmintics/pharmacology , Antineoplastic Agents/pharmacology , Drug Repositioning , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Animals , Anthelmintics/therapeutic use , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Drug Resistance, Neoplasm , Humans , Mice, SCID , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Tumor Cells, Cultured , Tumor Microenvironment/drug effects
3.
Front Cell Dev Biol ; 7: 40, 2019.
Article in English | MEDLINE | ID: mdl-30941349

ABSTRACT

Escape from chemotherapy-induced apoptosis is a hallmark of drug resistance in cancer. The recent identification of alternative programmed cell death pathways opens up for possibilities to circumvent the apoptotic blockade in drug resistant cancer and eliminate malignant cells. Indeed, we have recently shown that programmed necrosis, termed necroptosis, could be triggered to induce cell death in a subgroup of primary acute lymphoblastic leukemia (ALL) including highly refractory relapsed cases. In this review we focus on molecular mechanisms that drive drug resistance in ALL of childhood and discuss the potential of necroptosis activation to eradicate resistant disease.

4.
Haematologica ; 104(9): 1789-1797, 2019 09.
Article in English | MEDLINE | ID: mdl-30819912

ABSTRACT

Despite the advent of tyrosine kinase inhibitors, a proportion of chronic myeloid leukemia patients in chronic phase fail to respond to imatinib or to second-generation inhibitors and progress to blast crisis. Until now, improvements in the understanding of the molecular mechanisms responsible for chronic myeloid leukemia transformation from chronic phase to the aggressive blast crisis remain limited. Here we present a large parallel sequencing analysis of 10 blast crisis samples and of the corresponding autologous chronic phase controls that reveals, for the first time, recurrent mutations affecting the ubiquitin-conjugating enzyme E2A gene (UBE2A, formerly RAD6A). Additional analyses on a cohort of 24 blast crisis, 41 chronic phase as well as 40 acute myeloid leukemia and 38 atypical chronic myeloid leukemia patients at onset confirmed that UBE2A mutations are specifically acquired during chronic myeloid leukemia progression, with a frequency of 16.7% in advanced phases. In vitro studies show that the mutations here described cause a decrease in UBE2A activity, leading to an impairment of myeloid differentiation in chronic myeloid leukemia cells.


Subject(s)
Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myeloid, Acute/genetics , Mutation , Ubiquitin-Conjugating Enzymes/genetics , Blast Crisis/genetics , Cell Differentiation , Disease Progression , Drug Resistance, Neoplasm/genetics , Female , HEK293 Cells , Humans , Imatinib Mesylate/therapeutic use , K562 Cells , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Leukemia, Myeloid, Acute/pathology , Male , Protein Kinase Inhibitors/pharmacology , Sequence Analysis, DNA , Exome Sequencing
5.
Nat Commun ; 9(1): 2192, 2018 06 06.
Article in English | MEDLINE | ID: mdl-29875417

ABSTRACT

SETBP1 variants occur as somatic mutations in several hematological malignancies such as atypical chronic myeloid leukemia and as de novo germline mutations in the Schinzel-Giedion syndrome. Here we show that SETBP1 binds to gDNA in AT-rich promoter regions, causing activation of gene expression through recruitment of a HCF1/KMT2A/PHF8 epigenetic complex. Deletion of two AT-hooks abrogates the binding of SETBP1 to gDNA and impairs target gene upregulation. Genes controlled by SETBP1 such as MECOM are significantly upregulated in leukemias containing SETBP1 mutations. Gene ontology analysis of deregulated SETBP1 target genes indicates that they are also key controllers of visceral organ development and brain morphogenesis. In line with these findings, in utero brain electroporation of mutated SETBP1 causes impairment of mouse neurogenesis with a profound delay in neuronal migration. In summary, this work unveils a SETBP1 function that directly affects gene transcription and clarifies the mechanism operating in myeloid malignancies and in the Schinzel-Giedion syndrome caused by SETBP1 mutations.


Subject(s)
Carrier Proteins/genetics , Epigenesis, Genetic , Gene Expression Profiling , Mutation , Nuclear Proteins/genetics , Promoter Regions, Genetic/genetics , Abnormalities, Multiple/genetics , Animals , Brain/embryology , Brain/metabolism , Carrier Proteins/metabolism , Cell Line, Tumor , Craniofacial Abnormalities/genetics , Gene Ontology , HEK293 Cells , Hand Deformities, Congenital/genetics , Humans , Intellectual Disability/genetics , Leukemia/genetics , Leukemia/pathology , Mice , Nails, Malformed/genetics , Neurogenesis/genetics , Nuclear Proteins/metabolism , Protein Binding
7.
Am J Hematol ; 90(10): 910-4, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26178642

ABSTRACT

Imatinib is effective for the treatment of chronic myeloid leukemia (CML). However even undetectable BCR-ABL1 by Q-RT-PCR does not equate to eradication of the disease. Digital-PCR (dPCR), able to detect 1 BCR-ABL1 positive cell out of 10(7) , has been recently developed. The ISAV study is a multicentre trial aimed at validating dPCR to predict relapses after imatinib discontinuation in CML patients with undetectable Q-RT-PCR. CML patients under imatinib therapy since more than 2 years and with undetectable PCR for at least 18 months were eligible. Patients were monitored by standard Q-RT-PCR for 36 months. Patients losing molecular remission (two consecutive positive Q-RT-PCR with at least 1 BCR-ABL1/ABL1 value above 0.1%) resumed imatinib. The study enrolled 112 patients, with a median follow-up of 21.6 months. Fifty-two of the 108 evaluable patients (48.1%), relapsed; 73.1% relapsed in the first 9 months but 14 late relapses were observed between 10 and 22 months. Among the 56 not-relapsed patients, 40 (37.0% of total) regained Q-RT-PCR positivity but never lost MMR. dPCR results showed a significant negative predictive value ratio of 1.115 [95% CI: 1.013-1.227]. An inverse relationship between patients age and risk of relapse was evident: 95% of patients <45 years relapsed versus 42% in the class ≥45 to <65 years and 33% of patients ≥65 years [P(χ(2) ) < 0.0001]. Relapse rates ranged between 100% (<45 years, dPCR+) and 36% (>45 years, dPCR-). Imatinib can be safely discontinued in the setting of continued PCR negativity; age and dPCR results can predict relapse.


Subject(s)
Fusion Proteins, bcr-abl/metabolism , Imatinib Mesylate/administration & dosage , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Reverse Transcriptase Polymerase Chain Reaction , Adult , Age Factors , Aged , Female , Follow-Up Studies , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/epidemiology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Male , Middle Aged , Predictive Value of Tests , Recurrence
8.
Mol Cancer ; 14: 132, 2015 Jul 16.
Article in English | MEDLINE | ID: mdl-26179066

ABSTRACT

BACKGROUND: Chronic Myeloid Leukaemia (CML) is caused by the BCR/ABL1 fusion gene. Both the presence and the levels of BCR/ABL1 expression seem to be critical for CML progression from chronic phase (CP) to blast crisis (BC). After the oncogenic translocation, the BCR/ABL1 gene is under the transcriptional control of BCR promoter but the molecular mechanisms involved in the regulation of oncogene expression are mostly unknown. METHODS: A region of 1443bp of the functional BCR promoter was studied for transcription factor binding sites through in-silico analysis and Chromatin Immunoprecipitation experiments. BCR and BCR/ABL1 expression levels were analysed in CML cell lines after over-expression or silencing of MYC transcription factor. A luciferase reporter assay was used to confirm its activity on BCR promoter. RESULTS: In the present study we demonstrate that MYC and its partner MAX bind to the BCR promoter, leading to up-regulation of BCR and BCR/ABL1 at both transcriptional and protein levels. Accordingly, silencing of MYC expression in various BCR/ABL1 positive cell lines causes significant downregulation of BCR and BCR/ABL1, which consequently leads to decreased proliferation and induction of cell death. CONCLUSIONS: Here we describe a regulatory pathway modulating BCR and BCR/ABL1 expression, showing that the BCR promoter is under the transcriptional control of the MYC/MAX heterodimer. Since MYC is frequently over-expressed in BC, this phenomenon could play a critical role in BCR/ABL1 up-regulation and blast aggressiveness acquired during CML evolution.


Subject(s)
Fusion Proteins, bcr-abl/genetics , Gene Expression Regulation, Leukemic , Proto-Oncogene Proteins c-bcr/genetics , Proto-Oncogene Proteins c-myc/genetics , Transcription, Genetic , Base Sequence , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Binding Sites , Cell Line, Tumor , Gene Silencing , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Molecular Sequence Data , Promoter Regions, Genetic , Protein Binding , Proto-Oncogene Proteins c-bcr/chemistry , Proto-Oncogene Proteins c-myc/metabolism , RNA Interference , Repressor Proteins/genetics , Repressor Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptional Activation , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...