Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Microbiol Biotechnol ; 102(5): 2269-2278, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29356870

ABSTRACT

The genetic improvement of winemaking yeasts is a virtually infinite process, as the design of new strains must always cope with varied and ever-evolving production contexts. Good wine yeasts must feature both good primary traits, which are related to the overall fermentative fitness of the strain, and secondary traits, which provide accessory features augmenting its technological value. In this context, the superiority of "blind," genetic improvement techniques, as those based on the direct selection of the desired phenotype without prior knowledge of the genotype, was widely proven. Blind techniques such as adaptive evolution strategies were implemented for the enhancement of many traits of interest in the winemaking field. However, these strategies usually focus on single traits: this possibly leads to genetic tradeoff phenomena, where the selection of enhanced secondary traits might lead to sub-optimal primary fermentation traits. To circumvent this phenomenon, we applied a multi-step and strongly directed genetic improvement strategy aimed at combining a strong fermentative aptitude (primary trait) with an enhanced production of glutathione (secondary trait). We exploited the random genetic recombination associated to a library of 69 monosporic clones of strain UMCC 855 (Saccharomyces cerevisiae) to search for new candidates possessing both traits. This was achieved by consecutively applying three directional selective criteria: molybdate resistance (1), fermentative aptitude (2), and glutathione production (3). The strategy brought to the selection of strain 21T2-D58, which produces a high concentration of glutathione, comparable to that of other glutathione high-producers, still with a much greater fermentative aptitude.


Subject(s)
Glutathione/metabolism , Saccharomyces cerevisiae/metabolism , Wine/microbiology , Fermentation , Genotype , Molybdenum/metabolism , Phenotype , Phylogeny , Saccharomyces cerevisiae/classification , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development , Wine/analysis
2.
PLoS One ; 12(7): e0180814, 2017.
Article in English | MEDLINE | ID: mdl-28683117

ABSTRACT

Glutathione (GSH) production during wine fermentation is a desirable trait as it can limit must and wine oxidation and protect various aromatic compounds. UMCC 2581 is a Saccharomyces cerevisiae wine strain with enhanced GSH content at the end of wine fermentation. This strain was previously derived by selection for molybdate resistance following a sexual cycle of UMCC 855 using an evolution-based strategy. In this study, we examined genetic and gene expression changes associated with the derivation of UMCC 2581. For genetic analysis we sporulated the diploid UMCC 855 parental strain and found four phenotype classes of segregants related to molybdate resistance, demonstrating the presence of segregating variation from the parental strain. Using bulk segregant analysis we mapped molybdate traits to two loci. By sequencing both the parental and evolved strain genomes we identified candidate mutations within the two regions as well as an extra copy of chromosome 1 in UMCC 2581. Combining the mapped loci with gene expression profiles of the evolved and parental strains we identified a number of candidate genes with genetic and/or gene expression changes that could underlie molybdate resistance and increased GSH levels. Our results provide insight into the genetic basis of GSH production relevant to winemaking and highlight the value of enhancing wine strains using existing variation present in wine strains.


Subject(s)
Genetic Variation , Glutathione/biosynthesis , Molybdenum/pharmacology , Saccharomyces cerevisiae/genetics , Wine , Drug Resistance, Fungal , Gene Expression Regulation, Fungal , Genes, Fungal , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/metabolism
3.
AIMS Microbiol ; 3(2): 155-170, 2017.
Article in English | MEDLINE | ID: mdl-31294155

ABSTRACT

Glutathione (GSH) is the most abundant non-protein thiol in living organisms. Due to its important antioxidant role, it is widely used in medicine, as a food additive, and in the cosmetic industry. Recently, GSH has received growing attention in winemaking because of its ability to control oxidative spoilage damage and to protect various aromatic compounds. Indeed, GSH concentration in wine is highly variable and several factors are involved in its regulation, ranging from grape must to yeast fermentation activity. This short review aims at highlighting the common genetic strategies, useful for obtaining wine yeasts with enhanced GSH production, paying particular attention to the adaptive evolution approaches. Moreover, other strategies, such as random mutagenesis, metabolic engineering and hybridization have been briefly reviewed with a stress on both their strengths and weaknesses in terms of actual feasibility and acceptance by wine consumers.

4.
FEMS Yeast Res ; 14(6): 977-87, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25041878

ABSTRACT

In winemaking, the application of glutathione (GSH) has been the subject of ever-growing interest because of its important role in limiting must and wine oxidation and in protecting various aromatic compounds. Glutathione concentration in wine is highly variable, involving as it does several factors from must, through alcoholic fermentation, to yeast strain activity. Consequently, the development of new wine yeast strains able to improve flavor stability is in great demand. To generate evolved Saccharomyces cerevisiae strains with enhanced GSH production, we have applied an evolution-based strategy that combines the sexual recombination of spores with the application of molybdate, which is toxic for the cells at high concentration, as specific selective pressure. Eight molybdate-resistant strains were selected and further screened for GSH production in synthetic grape must and in microvinification assay. By this nongenetically modified strategy, we obtained two evolved strains, Mo21T2-5 and Mo21T2-12, both able to enhance GSH content in wine with an increase of 100% and 36%, respectively, compared with the parental strain 21T2, and 120% and 50% compared with initial GSH content in the must.


Subject(s)
Biological Evolution , Glutathione/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Beverages , Fermentation , Hydrogen Sulfide/metabolism , Models, Biological , Molybdenum/metabolism , Quantitative Trait, Heritable , Vitis , Wine
5.
Arch Microbiol ; 195(4): 269-78, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23430123

ABSTRACT

This work reports the preparation of two recombinant strains each containing two enzymatic activities mutually expressed through regulated systems for production of functionalized epoxides in one-pot reactions. One strain was Pseudomonas putida PaW340, containing the gene coding for styrene monooxygenase (SMO) from Pseudomonas fluorescens ST under the auto-inducing Ptou promoter and the TouR regulator of Pseudomonas sp. OX1 and the gene coding for naphthalene dihydrodiol dehydrogenase (NDDH) from P. fluorescens N3 under the Ptac promoter inducible by IPTG. The second strain was Escherichia coli JM109, in which the expression of SMO was under the control of the Pnah promoter and the NahR regulator of P. fluorescens N3 inducible by salicylate, while the gene expressing NDDH was under the control of the Plac promoter inducible by IPTG. SMO and NDDH activities were tested in bioconversion experiments using cinnamyl alcohol as reference substrate. The application that we selected is one example of the sequential use of the two enzymatic activities which require a temporal control of the expression of both genes.


Subject(s)
Escherichia coli/genetics , Gene Expression , Industrial Microbiology , Propanols/metabolism , Pseudomonas putida/genetics , Oxidoreductases/genetics , Oxygenases/genetics , Promoter Regions, Genetic , Pseudomonas fluorescens/classification , Pseudomonas fluorescens/enzymology , Pseudomonas fluorescens/genetics , Pseudomonas putida/enzymology , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...