Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Epidemiol ; 7(4): e254, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37545805

ABSTRACT

The frequency and severity of wildfires in the Western United States have increased over recent decades, motivating hypotheses that wildfires contribute to the incidence of coccidioidomycosis, an emerging fungal disease in the Western United States with sharp increases in incidence observed since 2000. While coccidioidomycosis outbreaks have occurred among wildland firefighters clearing brush, it remains unknown whether fires are associated with an increased incidence among the general population. Methods: We identified 19 wildfires occurring within California's highly endemic San Joaquin Valley between 2003 and 2015. Using geolocated surveillance records, we applied a synthetic control approach to estimate the effect of each wildfire on the incidence of coccidioidomycosis among residents that lived within a hexagonal buffer of 20 km radii surrounding the fire. Results: We did not detect excess cases due to wildfires in the 12 months (pooled estimated percent change in cases: 2.8%; 95% confidence interval [CI] = -29.0, 85.2), 13-24 months (7.9%; 95% CI = -27.3, 113.9), or 25-36 months (17.4%; 95% CI = -25.1, 157.1) following a wildfire. When examined individually, we detected significant increases in incidence following three of the 19 wildfires, all of which had relatively large adjacent populations, high transmission before the fire, and a burn area exceeding 5,000 acres. Discussion: We find limited evidence that wildfires drive increases in coccidioidomycosis incidence among the general population. Nevertheless, our results raise concerns that large fires in regions with ongoing local transmission of Coccidioides may be associated with increases in incidence, underscoring the need for field studies examining Coccidioides spp. in soils and air pre- and post-wildfires.

2.
Epidemics ; 41: 100640, 2022 12.
Article in English | MEDLINE | ID: mdl-36274569

ABSTRACT

We investigated the initial outbreak rates and subsequent social distancing behaviour over the initial phase of the COVID-19 pandemic across 29 Combined Statistical Areas (CSAs) of the United States. We used the Numerus Model Builder Data and Simulation Analysis (NMB-DASA) web application to fit the exponential phase of a SCLAIV+D (Susceptible, Contact, Latent, Asymptomatic infectious, symptomatic Infectious, Vaccinated, Dead) disease classes model to outbreaks, thereby allowing us to obtain an estimate of the basic reproductive number R0 for each CSA. Values of R0 ranged from 1.9 to 9.4, with a mean and standard deviation of 4.5±1.8. Fixing the parameters from the exponential fit, we again used NMB-DASA to estimate a set of social distancing behaviour parameters to compute an epidemic flattening index cflatten. Finally, we applied hierarchical clustering methods using this index to divide CSA outbreaks into two clusters: those presenting a social distancing response that was either weaker or stronger. We found cflatten to be more influential in the clustering process than R0. Thus, our results suggest that the behavioural response after a short initial exponential growth phase is likely to be more determinative of the rise of an epidemic than R0 itself.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , Pandemics/prevention & control , Physical Distancing , Basic Reproduction Number , Disease Outbreaks/prevention & control
3.
Lancet Planet Health ; 6(10): e793-e803, 2022 10.
Article in English | MEDLINE | ID: mdl-36208642

ABSTRACT

BACKGROUND: Drought is an understudied driver of infectious disease dynamics. Amidst the ongoing southwestern North American megadrought, California (USA) is having the driest multi-decadal period since 800 CE, exacerbated by anthropogenic warming. In this study, we aimed to examine the influence of drought on coccidioidomycosis, an emerging infectious disease in southwestern USA. METHODS: We analysed California census tract-level surveillance data from 2000 to 2020 using generalised additive models and distributed monthly lags on precipitation and temperature. We then developed an ensemble prediction algorithm of incident cases of coccidioidomycosis per census tract to estimate the counterfactual incidence that would have occurred in the absence of drought. FINDINGS: Between April 1, 2000, and March 31, 2020, there were 81 448 reported cases of coccidioidomycosis throughout California. An estimated 1467 excess cases of coccidioidomycosis were observed in California in the 2 years following the drought that occurred between 2007 and 2009, and an excess 2649 drought-attributable cases of coccidioidomycosis were observed in the 2 years following the drought that occurred between 2012 and 2015. These increased numbers of cases more than offset the declines in cases that occurred during drought. An IQR increase in summer temperatures was associated with 2·02 (95% CI 1·84-2·22) times higher incidence in the following autumn (September to November), and an IQR increase in precipitation in the winter was associated with 1·45 (1·36-1·55) times higher incidence in the autumn. The effect of winter precipitation was 36% (25-48) stronger when preceded by two dry, rather than average, winters. Incidence in arid counties was most sensitive to precipitation fluctuations, while incidence in wetter counties was most sensitive to temperature. INTERPRETATION: In California, multi-year cycles of dry conditions followed by a wet winter increases transmission of coccidioidomycosis, especially in historically wetter areas. With anticipated increasing frequency of drought in southwestern USA, continued expansion of coccidioidomycosis, along with more intense seasons, is expected. Our results motivate the need for heightened precautions against coccidioidomycosis in seasons that follow major droughts. FUNDING: National Institutes of Health.


Subject(s)
Coccidioidomycosis , Coccidioidomycosis/epidemiology , Droughts , Hot Temperature , Humans , Incidence , Seasons
4.
Sci Rep ; 11(1): 11777, 2021 06 03.
Article in English | MEDLINE | ID: mdl-34083563

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) the causal agent for COVID-19, is a communicable disease spread through close contact. It is known to disproportionately impact certain communities due to both biological susceptibility and inequitable exposure. In this study, we investigate the most important health, social, and environmental factors impacting the early phases (before July, 2020) of per capita COVID-19 transmission and per capita all-cause mortality in US counties. We aggregate county-level physical and mental health, environmental pollution, access to health care, demographic characteristics, vulnerable population scores, and other epidemiological data to create a large feature set to analyze per capita COVID-19 outcomes. Because of the high-dimensionality, multicollinearity, and unknown interactions of the data, we use ensemble machine learning and marginal prediction methods to identify the most salient factors associated with several COVID-19 outbreak measure. Our variable importance results show that measures of ethnicity, public transportation and preventable diseases are the strongest predictors for both per capita COVID-19 incidence and mortality. Specifically, the CDC measures for minority populations, CDC measures for limited English, and proportion of Black- and/or African-American individuals in a county were the most important features for per capita COVID-19 cases within a month after the pandemic started in a county and also at the latest date examined. For per capita all-cause mortality at day 100 and total to date, we find that public transportation use and proportion of Black- and/or African-American individuals in a county are the strongest predictors. The methods predict that, keeping all other factors fixed, a 10% increase in public transportation use, all other factors remaining fixed at the observed values, is associated with increases mortality at day 100 of 2012 individuals (95% CI [1972, 2356]) and likewise a 10% increase in the proportion of Black- and/or African-American individuals in a county is associated with increases total deaths at end of study of 2067 (95% CI [1189, 2654]). Using data until the end of study, the same metric suggests ethnicity has double the association as the next most important factors, which are location, disease prevalence, and transit factors. Our findings shed light on societal patterns that have been reported and experienced in the U.S. by using robust methods to understand the features most responsible for transmission and sectors of society most vulnerable to infection and mortality. In particular, our results provide evidence of the disproportionate impact of the COVID-19 pandemic on minority populations. Our results suggest that mitigation measures, including how vaccines are distributed, could have the greatest impact if they are given with priority to the highest risk communities.


Subject(s)
COVID-19/epidemiology , Machine Learning , Black or African American/statistics & numerical data , COVID-19/mortality , Health Status Disparities , Humans , Incidence , Minority Groups/statistics & numerical data , Risk Factors , United States/epidemiology , Vulnerable Populations/statistics & numerical data
5.
Philos Trans R Soc Lond B Biol Sci ; 374(1775): 20180282, 2019 06 24.
Article in English | MEDLINE | ID: mdl-31056043

ABSTRACT

Dynamic SEIR (Susceptible, Exposed, Infectious, Removed) compartmental models provide a tool for predicting the size and duration of both unfettered and managed outbreaks-the latter in the context of interventions such as case detection, patient isolation, vaccination and treatment. The reliability of this tool depends on the validity of key assumptions that include homogeneity of individuals and spatio-temporal homogeneity. Although the SEIR compartmental framework can easily be extended to include demographic (e.g. age) and additional disease (e.g. healthcare workers) classes, dependence of transmission rates on time, and metapopulation structure, fitting such extended models is hampered by both a proliferation of free parameters and insufficient or inappropriate data. This raises the question of how effective a tool the basic SEIR framework may actually be. We go some way here to answering this question in the context of the 2014-2015 outbreak of Ebola in West Africa by comparing fits of an SEIR time-dependent transmission model to both country- and district-level weekly incidence data. Our novel approach in estimating the effective-size-of-the-populations-at-risk ( Neff) and initial number of exposed individuals ( E0) at both district and country levels, as well as the transmission function parameters, including a time-to-halving-the-force-of-infection ( tf/2) parameter, provides new insights into this Ebola outbreak. It reveals that the estimate R0 ≈ 1.7 from country-level data appears to seriously underestimate R0 ≈ 3.3 - 4.3 obtained from more spatially homogeneous district-level data. Country-level data also overestimate tf/2 ≈ 22 weeks, compared with 8-10 weeks from district-level data. Additionally, estimates for the duration of individual infectiousness is around two weeks from spatially inhomogeneous country-level data compared with 2.4-4.5 weeks from spatially more homogeneous district-level data, which estimates are rather high compared with most values reported in the literature. This article is part of the theme issue 'Modelling infectious disease outbreaks in humans, animals and plants: approaches and important themes'. This issue is linked with the subsequent theme issue 'Modelling infectious disease outbreaks in humans, animals and plants: epidemic forecasting and control'.


Subject(s)
Hemorrhagic Fever, Ebola/epidemiology , Ebolavirus/physiology , Epidemics , Hemorrhagic Fever, Ebola/virology , Humans , Models, Statistical , Sierra Leone/epidemiology , Spatio-Temporal Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...