Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Diagnostics (Basel) ; 13(2)2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36673109

ABSTRACT

Breast cancer is one of the leading causes of death among women worldwide. Histopathological images have proven to be a reliable way to find out if someone has breast cancer over time, however, it could be time consuming and require much resources when observed physically. In order to lessen the burden on the pathologists and save lives, there is need for an automated system to effectively analysis and predict the disease diagnostic. In this paper, a lightweight separable convolution network (LWSC) is proposed to automatically learn and classify breast cancer from histopathological images. The proposed architecture aims to treat the problem of low quality by extracting the visual trainable features of the histopathological image using a contrast enhancement algorithm. LWSC model implements separable convolution layers stacked in parallel with multiple filters of different sizes in order to obtain wider receptive fields. Additionally, the factorization and the utilization of bottleneck convolution layers to reduce model dimension were introduced. These methods reduce the number of trainable parameters as well as the computational cost sufficiently with greater non-linear expressive capacity than plain convolutional networks. The evaluation results depict that the proposed LWSC model performs optimally, obtaining 97.23% accuracy, 97.71% sensitivity, and 97.93% specificity on multi-class categories. Compared with other models, the proposed LWSC obtains comparable performance.

2.
Diagnostics (Basel) ; 12(10)2022 Oct 13.
Article in English | MEDLINE | ID: mdl-36292173

ABSTRACT

Today, Magnetic Resonance Imaging (MRI) is a prominent technique used in medicine, produces a significant and varied range of tissue contrasts in each imaging modalities, and is frequently employed by medical professionals to identify brain malignancies. With brain tumor being a very deadly disease, early detection will help increase the likelihood that the patient will receive the appropriate medical care leading to either a full elimination of the tumor or the prolongation of the patient's life. However, manually examining the enormous volume of magnetic resonance imaging (MRI) images and identifying a brain tumor or cancer is extremely time-consuming and requires the expertise of a trained medical expert or brain doctor to manually detect and diagnose brain cancer using multiple Magnetic Resonance images (MRI) with various modalities. Due to this underlying issue, there is a growing need for increased efforts to automate the detection and diagnosis process of brain tumor without human intervention. Another major concern most research articles do not consider is the low quality nature of MRI images which can be attributed to noise and artifacts. This article presents a Contrast Limited Adaptive Histogram Equalization (CLAHE) algorithm to precisely handle the problem of low quality MRI images by eliminating noisy elements and enhancing the visible trainable features of the image. The enhanced image is then fed to the proposed PCNN to learn the features and classify the tumor using sigmoid classifier. To properly train the model, a publicly available dataset is collected and utilized for this research. Additionally, different optimizers and different values of dropout and learning rates are used in the course of this study. The proposed PCNN with Contrast Limited Adaptive Histogram Equalization (CLAHE) algorithm achieved an accuracy of 98.7%, sensitivity of 99.7%, and specificity of 97.4%. In comparison with other state-of-the-art brain tumor methods and pre-trained deep transfer learning models, the proposed PCNN model obtained satisfactory performance.

3.
Diagnostics (Basel) ; 12(3)2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35328271

ABSTRACT

Coronavirus disease has rapidly spread globally since early January of 2020. With millions of deaths, it is essential for an automated system to be utilized to aid in the clinical diagnosis and reduce time consumption for image analysis. This article presents a generative adversarial network (GAN)-based deep learning application for precisely regaining high-resolution (HR) CXR images from low-resolution (LR) CXR correspondents for COVID-19 identification. Respectively, using the building blocks of GAN, we introduce a modified enhanced super-resolution generative adversarial network plus (MESRGAN+) to implement a connected nonlinear mapping collected from noise-contaminated low-resolution input images to produce deblurred and denoised HR images. As opposed to the latest trends of network complexity and computational costs, we incorporate an enhanced VGG19 fine-tuned twin network with the wavelet pooling strategy in order to extract distinct features for COVID-19 identification. We demonstrate our proposed model on a publicly available dataset of 11,920 samples of chest X-ray images, with 2980 cases of COVID-19 CXR, healthy, viral and bacterial cases. Our proposed model performs efficiently both on the binary and four-class classification. The proposed method achieves accuracy of 98.8%, precision of 98.6%, sensitivity of 97.5%, specificity of 98.9%, an F1 score of 97.8% and ROC AUC of 98.8% for the multi-class task, while, for the binary class, the model achieves accuracy of 99.7%, precision of 98.9%, sensitivity of 98.7%, specificity of 99.3%, an F1 score of 98.2% and ROC AUC of 99.7%. Our method obtains state-of-the-art (SOTA) performance, according to the experimental results, which is helpful for COVID-19 screening. This new conceptual framework is proposed to play an influential role in addressing the issues facing COVID-19 examination and other diseases.

SELECTION OF CITATIONS
SEARCH DETAIL
...