Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Springerplus ; 4: 69, 2015.
Article in English | MEDLINE | ID: mdl-25853024

ABSTRACT

In order to assess the changes in sea-surface hydrology and productivity signal from the last glacial to the Holocene; a set of isotopic, geochemical and microgranulometric proxies was used for this study. Former studies revealed that the reconstruction of paleoproductivity from ocean sediment gives different results depending the measurement used. The comparison between our productivity proxies (total organic carbon, carbonate and planktonic δ(13)C) as well as previous results in nearby location indicates that the planktonic δ(13)C responds better to marine productivity changes and represents therefore a suitable proxy for paleoproductivity reconstruction in our studied area. The productivity signal reveals two main enrichments during the Young Dryas (YD) and the Heinrich Event 1 (HE 1) and correlates perfectly with upwelling activity mentioned by an increasing trend of aeolian proxies. In addition, our results show that biogenic components in the sediment have a marine origin and the proportion of organic matter preserved depends on the total sediment accumulation rate.

2.
Springerplus ; 3: 643, 2014.
Article in English | MEDLINE | ID: mdl-25485187

ABSTRACT

BACKGROUND: Several different classifications to characterize estuarine systems have been proposed. In this present paper, one of the most important estuaries in North Africa, the Oued Loukkos (Morocco), forms a case-study for proposing a systematic classification of this particular tidal estuary according to the vertical salinity gradient. FINDINGS: This study, conducted using a CTD, shows that the spatial-temporal distribution of salinity depends on the stage of the tide and the upstream distance from the mouth of the river. In this case, it is also evident that the morphology of the bottom was capable of impacting the distribution of salinity by locally changing the water circulation. CONCLUSIONS: Based on the vertical salinity gradient measurement, the Oued Loukkos represents an estuarine environment with one section near its mouth that can be characterized as a mixed mesotidal estuary and another section upstream which can be characterized as a stratified mesotidal estuary. Between, there is an intermediate zone with a low vertical gradient of salinity, classified as a partially mixed mesotidal estuary. When the effect of terrestrial inputs is low compared to marine inputs, the river bed topography plays a role in the stratification of salinity by either disrupting the vertical stratification of the water or by changing the lateral distribution of salinity. The proposed classification deepens our hydrological knowledge and provides descriptive labels to the Oued Loukkos estuary. It provides a valid starting point for predicting the environmental impact of future recreational, agricultural and commercial activities on the estuary.

SELECTION OF CITATIONS
SEARCH DETAIL
...