Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 5429, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38443496

ABSTRACT

The current work deals with the synthesis of a new glass series with a chemical formula of 5Al2O3-25PbO-10SiO2-(60-x) B2O3-xBaO; x was represented as 5, 10, 15, and 20 mol%. The FT-IR spectroscopy was used to present the structural modification by rising the BaO concentration within the synthesized glasses. Furthermore, the impacts of BaO substitution for B2O3 on the fabricated borosilicate glasses were investigated using the Makishima-Mackenzie model. Besides, the role of BaO in enhancing the gamma-ray shielding properties of the fabricated boro-silicate glasses was examined utilizing the Monte Carlo simulation. The mechanical properties evaluation depicts a reduction in the mechanical moduli (Young, bulk, shear, and longitudinal) by the rising of the Ba/B ratio in the fabricated glasses. Simultaneously, the micro-hardness boro-silicate glasses was reduced from 4.49 to 4.12 GPa by increasing the Ba2+/B3+ ratio from 0.58 to 3.18, respectively. In contrast, the increase in the Ba/B ratio increases the linear attenuation coefficient, where it is enhanced between 0.409 and 0.448 cm-1 by rising the Ba2+/B3+ ratio from 0.58 to 3.18, respectively. The enhancement in linear attenuation coefficient decreases the half-value thickness from 1.69 to 1.55 cm and the equivalent thickness of lead is also reduced from 3.04 to 2.78 cm, at a gamma-ray energy of 0.662 MeV. The study shows that the increase in the Ba2+/B3+ ratio enhances the radiation shielding capacity of the fabricated glasses however, it slightly degrades the mechanical properties of the fabricated glasses. Therefore, glasses with high ratios of Ba2+/B3+ have high gamma-ray shielding ability to be used in hospitals as a shielding material.

2.
Heliyon ; 9(7): e18309, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37539187

ABSTRACT

The successful application of glass-based materials in a wide range of scientific fields depends on the associated physical, optical, thermal, and mechanical properties. This article investigate the structural, Physical, thermal, optical, and mechanical properties of Dy2O3, Y2O3 co-activated telluro-borate glass developed using the melt-quenching method. The glassy quality and the elements component of the specimens were observed using XRD and EDX analyses. The addition of Y2O3 rise the glass density from 2.956 to 3.303 g/cm3 the refractive index from 2.5 to 2.7. These changes are due to the increase in polarizability and non-bridging oxygen (NBO). The photoluminescence (PL) spectra revealed a broad peak at 550 nm and additional weak emission peaks at 573 and 664 nm, respectively. While the observed broader peak can be linked to the convolution of Bi3+ ions transitions corresponding to the non-centrosymmetric site respectively, the weak emission bands are due to 4F9/2 â†’ 6H13/2 and 4F9/2 â†’ 6H11/2 Dy3+ transitions. Hence, the low symmetrical features of both Bi3+ and Dy3+ ions were confirmed. The increase in the Vickers hardness of the glass from 536.7 to 1366.9 indicates the influence of Y2O3 addition on the mechanical properties of the glasses. The findings help to improve our understanding of the behaviour of the glass composition and its prospective applications in disciplines such as photonic, and laser optics.

3.
PLoS One ; 18(4): e0284531, 2023.
Article in English | MEDLINE | ID: mdl-37053345

ABSTRACT

In this article, a heterogeneous multimodal anthropomorphic breast phantom with carcinoma is introduced to meet the response of the natural breast tissue when imaged using ionizing and non-ionizing machines. The skin, adipose, fibroglandular, pectoral muscle, and carcinoma tissue were mimicked. A T1-weighted breast magnetic resonance image with BI-RADS I tissue segmentation was used for molds creation. The tissue-mimicking materials (TMMs) were tailored in terms of their elemental composition weight fractions and their response to ionization radiation parameters. These are the mass attenuation coefficient (MAC), electron density (ne) and effective atomic number (Zeff). The behaviour of the TMMs, when exposed to a wide range of ionization radiation energy, was investigated analytically and numerically using X-COM. The achieved results showed an excellent agreement with the corresponding properties of the natural breast elemental compositions as reported by the International Commission on Radiation Units and Measurements (ICRU). The MAC of the TMMs and the ICRU-based breast tissue were found to be consistent. The maximum percentage of error in ne and Zeff amounts to only 2.93% and 5.76%, respectively. For non-ionizing imaging, the TMMs were characterized in term of T1 and T2 relaxation times. Using our preclinical MRI unit, the TMMs relaxation times were measured and compared to the natural tissue. The fabricated phantom was validated experimentally using CT, MRI, and Mammographic machines. The achieved images of the TMMs were in alignment with the real tissue in terms of CT HU values and grayscale colors. T1W and T2W images on MRI revealed the expected contrast between TMMs as in natural tissue.


Subject(s)
Mammography , Tomography, X-Ray Computed , Tomography, X-Ray Computed/methods , Phantoms, Imaging , Magnetic Resonance Imaging/methods
4.
Nanomaterials (Basel) ; 12(19)2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36234618

ABSTRACT

New series of YBCO ceramics samples doping with different oxides such as SiO2, WO3, Al2O3, and TiO2 were fabricated to study the ionizing radiation shielding properties. The structure and morphology were explored by X-ray diffraction (XRD) and scanning electron microscope (SEM). The shielding properties were investigated experimentally and theoretically to check the validity of the results. The investigated radiation shielding properties include the proton, neutron, and gamma-ray. The XRD results show the orthorhombic structure for all ceramics without any additional peaks related to WO3, SiO2, TiO2, and Al2O3. At the same time, the SEM results appear to have a significant differentiation in the granular behavior of all ceramics surfaces. The incorporation of WO3 to YBCO enhanced the ceramic density, whereas the addition of different oxides reduced the density for ceramic samples. This variation in density changed the radiation shielding results. The sample containing WO3 (YBCO-W) gives us better results in radiation shielding properties for gamma and neutron; the sample having Al2O3 (YBCO-Al) is superior in shielding results for charged particles. Finally, the possibility to use YBCO with various oxides in different ionizing radiation shielding fields can be concluded.

5.
Appl Radiat Isot ; 189: 110408, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36029638

ABSTRACT

In the current study, we fabricated a series of boro-tellurite glass samples with a composition 10SrO-10Al2O3-10MoO3-(70-x)B2O3-xTeO2, where (x = 0, 17.5, 35, 52.5, and 70 mol%) via an ordinary melt-quench method. The glass structure was explored by X-ray diffraction (XRD), physical and structural properties. XRD results affirm the existence of two broad peaks, proving the amorphous state of the current glasses. The acquired results exhibit a linear relationship between the density, Poisson's ratio, and the addition of TeO2 amounts. The addition of TeO2 to the glass system shows a rise in glass stability and a reduction in packing density. Additionally, the values of mass attenuation coefficient (MAC) were determined experimentally within five energies (0.184, 0.280, 0.661, 0.710, and 0.810 MeV) from two radiation sources (166Ho and 137Cs). The (MAC)exp results were compared with XCOM values, and the compared values showed excellent compatibility. From the experimental results, many radiation shielding features involving half-value layer (HVL), mean free path (MFP), tenth value layer (TVL), and radiation protection efficiency (RPE) were computed. From the obtained results, it can be concluded that the TeSB4 sample has the highest stability and absorption for radiation, indicating the ability to use it as a radiation shielding substance.


Subject(s)
Radiation Protection , Glass/chemistry , Radiation Protection/methods , X-Ray Diffraction
6.
Appl Radiat Isot ; 173: 109720, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33894469

ABSTRACT

The present work novelty pointed to fabricate new clay bricks doped with heavy minerals to be used in the building materials as a candidate for radiation shielding. The bricks were manufactured as (y)Iron mineral+ (1-y)clay, where y = 0, 0.1, 0.2 and 0.3 fractional weight. The prepared bricks' chemical composition and density were introduced to the MCNP-5 code to assess the prepared bricks' protection capacity. The simulated linear attenuation coefficient (LAC) was confirmed by comparing the simulated results with those calculated by the Phy-X/PSD program. We found that the simulated and calculated LAC were close together. The diff (%) between the MCNP-5 and Phy-X/PSD is in the range ±2% for all the fabricated bricks. The maximum LAC values occurred at 0.015 MeV, varied between 21.540 and 39.553 cm-1 for bricks N0 and N30. The lowest LAC achieved at 15 MeV varied between 0.068 and 0.090 cm-1. Bricks without heavy mineral addition have the lowest LAC values at all energies, ranging from 21.540 cm-1 to 0.068 cm-1, while bricks with 30 wt% heavy minerals have the highest LAC. The half-value layer (HVL) values decreased gradually with increasing the mineral ratio in the fabricated bricks. The thinner brick HVL achieved for the sample N 30 with 30 wt % heavy mineral, growing from 0.017 to 7.675 cm. The effective atomic number (Zeff) was reported, and we found that the minimum Zeff values equal to 14.006, 14.865, 15.705, and 16.394 for bricks N 0, N 10, N 20, N 30, respectively.


Subject(s)
Clay , Gamma Rays , Minerals/chemistry , Radiation Protection/instrumentation , Monte Carlo Method
7.
Luminescence ; 35(4): 525-533, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31883298

ABSTRACT

Lithium borate (LB) glasses doped with dysprosium oxide (Dy2 O3 ) have been prepared by utilizing the conventional melt-quench technique. The prepared glass samples were exposed to 60 Co to check their dosimetric features and kinetic parameters. These features involve glow curves, annealing, fading, reproducibility, minimum detectable dose (MDD), and effective atomic number (Zeff ). Kinetic parameters including the frequency factors and activation energy were also determined using three methods (glow curve analysis, initial rise, and peak shape method) and were thoroughly interpreted. In addition, the incorporation of Dy impurities into LB enhanced the thermoluminescence sensitivity ~170 times. The glow from LB:Dy appeared as a single prominent peak at 190°C. The best annealing proceeding was obtained at 300°C for 30 min. Signal stability was reported for a period of 1 and 3 months with a reduction of 26% and 31%, respectively. The proposed glass samples showed promising dosimeter properties that can be recommended for personal radiation monitoring.


Subject(s)
Borates/chemistry , Dysprosium/chemistry , Lithium Compounds/chemistry , Thermoluminescent Dosimetry , Glass/chemistry , Kinetics
8.
J Xray Sci Technol ; 27(1): 139-147, 2019.
Article in English | MEDLINE | ID: mdl-30584178

ABSTRACT

BACKGROUND: Numerous techniques had been proposed to reduce radiation exposure in computed tomography (CT) including the use of radiation shielding. OBJECTIVE: This study aims to evaluate efficacy of using a bismuth breast shield and optimized scanning parameter to reduce breast absorbed doses from CT thorax examination. METHODS: Five protocols comprising the standard CT thorax clinical protocol (CP1) and four modified protocols (CP2 to CP5) were applied in anthropomorphic phantom scans. The phantom was configured as a female by placing a breast component on the chest. The breast component was divided into four quadrants, where 2 thermoluminescence dosimeters (TLD-100) were inserted into each quadrant to measure the absorbed dose. The bismuth shield was placed over the breast component during CP4 and CP5 scans. RESULTS: The pattern of absorbed doses in each breast and quadrant were approximately the same for all protocols, where the 4th quadrant > 3rd quadrant > 2nd quadrant > 1st quadrant. The mean absorbed dose value in CP3 was reduced to almost 34% of CP1's mean absorbed dose. It was reduced even lower to 15% of CP1's mean absorbed dose when the breast shield was used in CP5. CONCLUSION: This study showed that CT radiation exposure on the breast could be reduced by using a bismuth shield and low tube potential protocol without compromising the image quality.


Subject(s)
Bismuth , Breast/radiation effects , Radiation Protection/instrumentation , Female , Humans , Phantoms, Imaging , Radiation Dosage , Radiography, Thoracic , Tomography, X-Ray Computed
9.
Luminescence ; 31(3): 754-9, 2016 May.
Article in English | MEDLINE | ID: mdl-26333749

ABSTRACT

UNLABELLED: Influence of Nd(3+) concentration on the optical and thermoluminescence (TL) properties of melt-annealed synthesized 10 Na2O: 20 Li2O: (70-x) B2O3 : xNd2O3, where 0.1≤ x ≤0.7 (LNB) glasses are determined. The absence of sharp peaks in X-ray diffraction patterns confirms the amorphous nature of the prepared glasses. The photoluminescence spectra under 800 nm laser excitations at room temperature exhibit three prominent peaks centred at 538, 603 and 675 nm corresponding to the transitions of (4)G(7/2) → (4)I(9/2), [(4)G(7/2) → (4)I(11/2), (4)G(5/2) → (4)I(9/2)] and [(4)G(7/2) → (4)I(13/2), (4)G(5/2) → (4)I(11/2)], respectively. The TL glow curve exhibits a prominent peak (T(m)) at 180°C. The best performance of the prepared glass was found at 0.5 mol% of Nd2O3. We achieved a good linearity of TL response against dose between 0.5 to 4.0 Gy. The calculated value of the effective atomic number, Z(eff), is 7.55 which is nearly tissue equivalent (Z(eff) = 7.42). These promising features demonstrate the capability of the aforementioned glass to be used as a radiation dosimeter. HIGHLIGHTS: The thermoluminescence and optical properties of new compositions of lithium sodium borate glasses doped with Nd(3+) ions were reported. Attractive features were obtained from the TL, PL and UV-Vis light analysis. Three upconversion luminescences permitting green, orange and red emissions were observed.


Subject(s)
Boron/chemistry , Glass/chemistry , Lithium/chemistry , Luminescence , Oxygen/chemistry , Photochemical Processes , Sodium/chemistry , Temperature
10.
Luminescence ; 30(8): 1330-5, 2015 Dec.
Article in English | MEDLINE | ID: mdl-25828828

ABSTRACT

We report the impact of dysprosium (Dy(3+)) dopant and magnesium oxide (MgO) modifier on the thermoluminescent properties of lithium borate (LB) glass via two procedures. The thermoluminescence (TL) glow curves reveal a single prominent peak at 190 °C for 0.5 mol% of Dy(3+). An increase in MgO contents by 10 mol% enhances the TL intensity by a factor of 1.5 times without causing any shift in the maximum temperature. This enhancement is attributed to the occurrence of extra electron traps created via magnesium and the energy transfer to trivalent Dy(3+) ions. Good linearity in the range of 0.01-4 Gy with a linear correlation coefficient of 0.998, fading as low as 21% over a period of 3 months, excellent reproducibility without oven annealing and tissue equivalent effective atomic numbers ~8.71 are achieved. The trap parameters, including geometric factor (µg), activation energy (E) and frequency factor (s) associated with LMB:Dy are also determined. These favorable TL characteristics of prepared glasses may contribute towards the development of Li2O-MgO-B2O3 radiation dosimeters.


Subject(s)
Borates/chemistry , Dysprosium/chemistry , Glass/chemistry , Lithium/chemistry , Magnesium Compounds/chemistry
11.
Appl Radiat Isot ; 91: 126-30, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24929526

ABSTRACT

Lithium potassium borate (LKB) glasses co-doped with TiO2 and MgO were prepared using the melt quenching technique. The glasses were cut into transparent chips and exposed to gamma rays of (60)Co to study their thermoluminescence (TL) properties. The TL glow curve of the Ti-doped material featured a single prominent peak at 230 °C. Additional incorporation of MgO as a co-activator enhanced the TL intensity threefold. LKB:Ti,Mg is a low-Z material (Z(eff)=8.89) with slow signal fading. Its radiation sensitivity is 12 times lower that the sensitivity of TLD-100. The dose response is linear at doses up to 10(3) Gy. The trap parameters, such as the kinetics order, activation energy, and frequency factor, which are related to the glow peak, were determined using TolAnal software.

SELECTION OF CITATIONS
SEARCH DETAIL
...