Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 16(7): S562-74, 2005 Jul.
Article in English | MEDLINE | ID: mdl-21727478

ABSTRACT

This work focuses on the modelling, simulation and control of a batch protein crystallization process that is used to produce the crystals of tetragonal hen egg-white (HEW) lysozyme. First, a model is presented that describes the formation of protein crystals via nucleation and growth. Existing experimental data are used to develop empirical models of the nucleation and growth mechanisms of the tetragonal HEW lysozyme crystal. The developed growth and nucleation rate expressions are used within a population balance model to simulate the batch crystallization process. Then, model reduction techniques are used to derive a reduced-order moments model for the purpose of controller design. Online measurements of the solute concentration and reactor temperature are assumed to be available, and a Luenberger-type observer is used to estimate the moments of the crystal size distribution based on the available measurements. A predictive controller, which uses the available state estimates, is designed to achieve the objective of maximizing the volume-averaged crystal size while respecting constraints on the manipulated input variables (which reflect physical limitations of control actuators) and on the process state variables (which reflect performance considerations). Simulation results demonstrate that the proposed predictive controller is able to increase the volume-averaged crystal size by 30% and 8.5% compared to constant temperature control (CTC) and constant supersaturation control (CSC) strategies, respectively, while reducing the number of fine crystals produced. Furthermore, a comparison of the crystal size distributions (CSDs) indicates that the product achieved by the proposed predictive control strategy has larger total volume and lower polydispersity compared to the CTC and CSC strategies. Finally, the robustness of the proposed method (achieved due to the presence of feedback) with respect to plant-model mismatch is demonstrated. The proposed method is demonstrated to successfully achieve the task of maximizing the volume-averaged crystal size in the presence of plant-model mismatch, and is found to be robust in comparison to open-loop optimal control strategies.

2.
Biotechnol Prog ; 18(5): 1010-26, 2002.
Article in English | MEDLINE | ID: mdl-12363352

ABSTRACT

Saccharomyces cerevisiae is known to exhibit sustained oscillations in chemostats operated under aerobic and glucose-limited growth conditions. The oscillations are reflected both in intracellular and extracellular measurements. Our recent work has shown that unstructured cell population balance models are capable of generating sustained oscillations over an experimentally meaningful range of dilution rates. A disadvantage of such unstructured models is that they lack variables that can be compared directly to easily measured extracellular variables. Thus far, most of our work in model development has been aimed at achieving qualitative agreement with experimental data. In this paper, a segregated model with a simple structured description of the extracellular environment is developed and evaluated. The model accounts for the three most important metabolic pathways involved in cell growth with glucose substrate. As compared to completely unstructured models, the major advantage of the proposed model is that predictions of extracellular variables can be compared directly to experimental data. Consequently, the model structure is well suited for the application of estimation techniques aimed at determining unknown model parameters from available extracellular measurements. A steady-state parameter selection method developed in our group is extended to oscillatory dynamics to determine the parameters that can be estimated most reliably. The chosen parameters are estimated by solving a nonlinear programming problem formulated to minimize the difference between predictions and measurements of the extracellular variables. The efficiency of the parameter estimation scheme is demonstrated using simulated and experimental data.


Subject(s)
Cell Culture Techniques/methods , Computer Simulation , Glucose/metabolism , Models, Biological , Oxygen/metabolism , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/metabolism , Cell Count , Cell Division , Cells, Cultured , Culture Media/metabolism , Homeostasis , Models, Chemical , Reproducibility of Results , Saccharomyces cerevisiae/cytology , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...