Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Probiotics Antimicrob Proteins ; 15(1): 30-43, 2023 02.
Article in English | MEDLINE | ID: mdl-35933471

ABSTRACT

Probiotics or direct-fed microbials (DFM) have proven strong potential for improving aquaculture sustainability. This study aims to evaluate the effects of dietary supplementation with the DFM Bacillus amyloliquefaciens US573 on growth performance, intestinal morphology, and gut microbiota (GM) of European sea bass. For this purpose, healthy fish were divided into two feeding trials in triplicate of 25 fish in each tank. The fish were fed with a control basal diet or a DFM-supplemented diet for 42 days. Results showed that, while no significant effects on growth performance were observed, the length and abundance of villi were higher in the DFM-fed group. The benefic effects of DFM supplementation included also the absence of cysts formation and the increase in number of goblet cells playing essential role in immune response. Through DNA metabarcoding analysis of GM, 5 phyla and 14 major genera were identified. At day 42, the main microbiome changes in response to B. amyloliquefaciens US573 addition included the significant decrease in abundance of Actinobacteria phylum that perfectly correlates with a decrease in Nocardia genus representatives which represent serious threat in marine and freshwater fish. On the contrary, an obvious dominance of Betaproteobacteria associated with the abundance in Variovorax genus members, known for their ability to metabolize numerous substrates, was recorded. Interestingly, Firmicutes, particularly species affiliated to the genus Sporosarcina with recent promising probiotic potential, were identified as the most abundant. These results suggest that B. amyloliquefaciens US573 can be effectively recommended as health-promoting DFM in European sea bass farming.


Subject(s)
Bacillus amyloliquefaciens , Bass , Gastrointestinal Microbiome , Probiotics , Animals , Dietary Supplements/analysis , Intestines , Diet/veterinary , Probiotics/pharmacology , Probiotics/analysis , Animal Feed/analysis
2.
Front Microbiol ; 13: 977797, 2022.
Article in English | MEDLINE | ID: mdl-36386625

ABSTRACT

Agroforestry (AF) is a promising land-use system to mitigate water deficiency, particularly in semi-arid areas. However, the belowground microbes associated with crops below trees remain seldom addressed. This study aimed at elucidating the effects of olive AF system intercropped with durum wheat (Dw), barely (Ba), chickpea (Cp), or faba bean (Fb) on crops biomass and their soil-rhizosphere microbial networks as compared to conventional full sun cropping (SC) under rainfed conditions. To test the hypothesis, we compared the prokaryotic and the fungal communities inhabiting the rhizosphere of two cereals and legumes grown either in AF or SC. We determined the most suitable annual crop species in AF under low-rainfed conditions. Moreover, to deepen our understanding of the rhizosphere network dynamics of annual crops under AF and SC systems, we characterized the microbial hubs that are most likely responsible for modifying the microbial community structure and the variability of crop biomass of each species. Herein, we found that cereals produced significantly more above-ground biomass than legumes following in descending order: Ba > Dw > Cp > Fb, suggesting that crop species play a significant role in improving soil water use and that cereals are well-suited to rainfed conditions within both types of agrosystems. The type of agrosystem shapes crop microbiomes with the only marginal influence of host selection. However, more relevant was to unveil those crops recruits specific bacterial and fungal taxa from the olive-belowground communities. Of the selected soil physicochemical properties, organic matter was the principal driver in shaping the soil microbial structure in the AF system. The co-occurrence network analyses indicated that the AF system generates higher ecological stability than the SC system under stressful climate conditions. Furthermore, legumes' rhizosphere microbiome possessed a higher resilient capacity than cereals. We also identified different fungal keystones involved in litter decomposition and drought tolerance within AF systems facing the water-scarce condition and promoting crop production within the SC system. Overall, we showed that AF reduces cereal and legume rhizosphere microbial diversity, enhances network complexity, and leads to more stable beneficial microbial communities, especially in severe drought, thus providing more accurate predictions to preserve soil diversity under unfavorable environmental conditions.

3.
Front Bioeng Biotechnol ; 10: 1100533, 2022.
Article in English | MEDLINE | ID: mdl-36686251

ABSTRACT

The current research work attempted to investigate, for the first time, the impact of biochar addition, on anaerobic digestion of olive mill wastewater with different initial chemical oxygen demand loads in batch cultures (10 g/L, 15 g/L, and 20 g/L). Methane yields were compared by applying one-way analysis of variance (ANOVA) followed by post-hoc Tukey's analysis. The results demonstrated that adding at 5 g/L biochar to olive mill wastewater with an initial chemical oxygen demand load of 20 g/L increased methane yield by 97.8% and mitigated volatile fatty acid accumulation compared to the control batch. According to the results of microbial community succession revealed by the Illumina amplicon sequencing, biochar supplementation significantly increased diversity of the microbial community and improved the abundance of potential genera involved in direct interspecies electron transfer, including Methanothrix and Methanosarcina. Consequently, biochar can be a promising alternative in terms of the recovery of metabolic activity during anaerobic digestion of olive mill wastewater at a large scale.

4.
Sci Total Environ ; 773: 145008, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-33592479

ABSTRACT

AIMS: The effects of aridity on soil and water-use efficient (WUE) crop species are relatively well known. However, the understanding of its impacts on the dynamics of below-ground microorganisms associated with plant roots is less well understood. METHODS: To investigate the influence of increasing aridity on the dynamics of the fungal communities, samples from the root endosphere and rhizosphere associated with the prickly pear cactus trees (Opuntia ficus-indica) growing along the aridity gradient were collected and the internal transcribed spacer (ITS) were sequenced. The diversity and network analyses of fungal taxa were determined along with standard measurements of soil parameters. RESULTS: We found that (i) the fungal community exhibited similar alpha diversity and shared a set of core taxa within the rhizosphere and endosphere, but there was significant beta diversity differences; (ii) the relative abundance of major phyla was higher in the rhizosphere than in the endosphere; (iii) arbuscular endomycorrhizal colonization was highest in the humid climate and decreased under lower-arid, and was negatively correlated with increased concentration of Ca2+ in the soil; (iv) increased aridity correlated with increased connectivity of the soil microbial-root fungal networks in the arid soils, producing a highly cohesive network in the upper-arid area; and (v) distinct fungal hubs sculpt the fungal microbiome network structure in the rhizosphere and endosphere within each bioclimatic zone. CONCLUSIONS: Our findings highlight the importance of gradient analysis-based correlation network as a powerful approach to understand changes in the diversity, the dynamics, and the structure of fungal communities associated with the rhizosphere-endosphere interaction and led to the identification of microbes at each bioclimatic zone that are potentially involved in promoting the survival, protection, and growth of Opuntia trees. The variability of fungal hubs composition depending on plant compartment and bioclimatic zone will give key implications for the application of rhizospheric fungi and endophytes as microbial inoculants in agriculture, as well as in the conservation and restoration of cacti plants in arid and semi-arid lands against the backdrop of climate change. Overall, this study will enhance our understanding of the microbiomes'dynamic of CAM plants in nature.


Subject(s)
Mycobiome , Opuntia , Fungi , Plant Roots , Rhizosphere , Soil Microbiology
5.
Sci Total Environ ; 751: 141399, 2021 Jan 10.
Article in English | MEDLINE | ID: mdl-32866829

ABSTRACT

We investigated the efficiency of a benthic diatom-associated bacteria in removing benzo(a)pyrene (BaP) and fluoranthene (Flt). The diatom, isolated from a PAH-contaminated sediment of the Bizerte Lagoon (Tunisia), was exposed in axenic and non-axenic cultures to PAHs over 7 days. The diversity of the associated bacteria, both attached (AB) and free-living bacteria (FB), was analyzed by the 16S rRNA amplicon sequencing. The diatom, which maintained continuous growth under PAH treatments, was able to accumulate BaP and Flt, with different efficiencies between axenic and non-axenic cultures. Biodegradation, which constituted the main process for PAH elimination, was enhanced in the presence of bacteria, indicating the co-metabolic synergy of microalgae and associated bacteria in removing BaP and Flt. Diatom and bacteria showed different capacities in the degradation of BaP and Flt. Nitzschia sp. harbored bacterial communities with a distinct composition between attached and free-living bacteria. The AB fraction exhibited higher diversity and abundance relative to FB, while the FB fraction contained genera with the known ability of PAH degradation, such as Marivita, Erythrobacter, and Alcaligenes. Moreover, strains of Staphylococcus and Micrococcus, isolated from the FB community, showed the capacity to grow in the presence of crude oil. These results suggest that a "benthic Nitzschia sp.-associated hydrocarbon-degrading bacteria" consortium can be applied in the bioremediation of PAH-contaminated sites.


Subject(s)
Diatoms , Polycyclic Aromatic Hydrocarbons , Bacteria/genetics , Benzo(a)pyrene , Biodegradation, Environmental , Fluorenes , Polycyclic Aromatic Hydrocarbons/analysis , RNA, Ribosomal, 16S/genetics , Tunisia
6.
Front Microbiol ; 11: 1622, 2020.
Article in English | MEDLINE | ID: mdl-32849335

ABSTRACT

Recent microbiome research has shown that soil fertility, plant-associated microbiome, and crop production can be affected by abiotic environmental parameters. The effect of aridity gradient on rhizosphere-soil (rhizosphere) and endosphere-root (endosphere) prokaryotic structure and diversity associated with cacti remain poorly investigated and understood. In the current study, next-generation sequencing approaches were used to characterize the diversity and composition of bacteria and archaea associated with the rhizosphere and endosphere of Opuntia ficus-indica spineless cacti in four bioclimatic zones (humid, semi-arid, upper-arid, and lower-arid) in Tunisia. Our findings showed that bacterial and archaeal cactus microbiomes changed in inside and outside roots and along the aridity gradient. Plant compartment and aridity gradient were the influencing factors on the differentiation of microbial communities in rhizosphere and endosphere samples. The co-occurrence correlations between increased and decreased OTUs in rhizosphere and endosphere samples and soil parameters were determined according to the aridity gradient. Blastococcus, Geodermatophilus, Pseudonocardia, Promicromonospora, and Sphingomonas were identified as prevailing hubs and were considered as specific biomarkers taxa, which could play a crucial role on the aridity stress. Overall, our findings highlighted the prominence of the climatic aridity gradient on the equilibrium and diversity of microbial community composition in the rhizosphere and endosphere of cactus.

7.
3 Biotech ; 10(3): 89, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32089984

ABSTRACT

A newly marine Halomonas pacifica strain Cnaph3 was isolated, as a naphthalene degrader and biosurfactant producer, from contaminated seawater collected in Ataya's fishing harbor, located in Kerkennah Islands, Tunisia. Chromatography flame ionization detector analysis revealed that 98.8% of naphthalene (200 mg/L) was degraded after 7 days of incubation, at 30 g/L NaCl and 37 °C. Strain Cnaph3 showed also a noticeable capacity to grow on a wide range of aliphatic, aromatic, and complex hydrocarbons. Interestingly, strain Cnaph3 showed a significant potential to produce biosurfactants in the presence of all tested substrates, particularly on glycerol (1%, v/v). Electrospray ionization analysis of the biosurfactant, designated Bios-Cnaph3, suggested a lipopeptide composition. The critical micelle concentration of Bios-Cnaph3 was about 500 mg/L. At this concentration, the surface tension of the water was reduced to 27.6 mN/m. Furthermore, Bios-Cnaph3 displayed interesting stabilities over a wide range of temperatures (4-105 °C), salinities (0-100 g/L NaCl), and pH (2.2-12.5). In addition, it showed promising capacities to remove used motor oil from contaminated soils. The biodegradation and biosurfactant-production potential of the Halomonas sp. strain Cnaph3 would present this strain as a favorite agent for bioremediation of hydrocarbon-contaminated sites under saline conditions.

8.
Environ Technol ; 41(13): 1715-1725, 2020 May.
Article in English | MEDLINE | ID: mdl-30403923

ABSTRACT

The purpose of the present work is to treat saline Tuna fish wastewater, with the salt concentration of 43 g L-1 and total organic carbon (TOC) of 8.3 g L-1, using an anaerobic fixed bed reactor involving salt-tolerant bacteria from the natural hypersaline environment during 150 days. The highest volatile solids (VS) removal efficiency of 84.1% was recorded for the organic loading rate (OLR) of 1.04 g TOC L-1.d-1 and the lowest salinity of 14.6 g NaCl L-1. In addition, the maximum biogas production of 0.8 L-1.d-1 for a working volume of 4 L and an organic loading rate of 2.07 g TOC L-1.d-1 correlated with the decrease of Volatile fatty acids (VFA) content. The Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis (PCR-DGGE) and the phylogenetic analysis of the bacterial community showed the action of hydrolytic, acidogenic, halotolerant sulfate-reducing and halophilic fermentative bacterium during the processing time. A stable archaeal and methanogenic community's diversity including hydrogenotrophic methanogens was demonstrated with Quantitative-PCR (Q-PCR). The highest bacterial population abundance was detected for 1.45 g TOC L-1.d-1 and the important methanogenic community abundance for 2.07 g TOC L-1.d-1 may be related to the highest biogas production in this charge for an effluent salinity of 27.7 g NaCl L-1.


Subject(s)
Microbiota , Wastewater , Anaerobiosis , Bioreactors , Methane , Phylogeny
9.
Environ Sci Pollut Res Int ; 26(21): 21404-21415, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31124074

ABSTRACT

Phosphoric acid production and olive oil production are among the most important economical sectors in Tunisia. However, they generate huge amounts of wastes (phosphogypsum, olive mill waste water, and olive pomace). In a previous study, we used phosphogypsum (PG), in co-composting with organic wastes. Three composts were produced; their PG content was of 0 (AT), 10 (A10), and 30% (A30). In the present study, we focused on their derived compost teas. The physico-chemical characterization of the different compost teas showed that those from A10 and A30 composts presented higher P and Ca contents than that from control one (AT). The microbial characterization using DGGE showed a noticeable microbial diversity in the different compost teas and that the addition of 10% and 30% PG in the compost had different effects on the compost tea microbial diversity. The identification results showed that the addition of 10 and 30% of PG did not affect the presence of PGPR (plant growth-promoting rhizobacteria) and fungal soil antagonists in the compost teas. Two PGPRs were isolated from AT and A30 compost teas, and their effect on the growth of potato plants in vitro was evaluated.


Subject(s)
Calcium Sulfate/chemistry , Composting , Phosphorus/chemistry , Soil Microbiology , Olea , Olive Oil , Plant Development , Soil/chemistry , Solanum tuberosum/growth & development , Tea , Tunisia , Wastewater
10.
Extremophiles ; 22(5): 811-823, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30014241

ABSTRACT

Chott El Jerid is the largest hypersaline ephemeral lake in southern Tunisian Sahara desert and is one of the biggest depressions at the North of Africa. This study aimed to investigate the diversity and abundance of microbial communities inhabiting Chott El Jerid during wet season (when it was flooded), using molecular methods [Illumina Miseq sequencing, DGGE and qPCR (qPCR)]. 16S rRNA gene analyses revealed that bacterial community was dominated by Proteobacteria (especially Ralstonia species), followed by Firmicutes, Bacteroidetes, Cyanobacteria, Actinobacteria and Verrucomicrobia. The results obtained using prokaryotic universal primers showed low relative abundance of Archaea dominated by few OTUs related to Methanosarcinaceae and Methanomassiliicoccaceae families and the presence of sulfate-reducing Archaea affiliated with Archaeoglobus. However, the results obtained using Archaea-specific primers showed that archaeal community was mainly composed of aerobic Halobacteria (especially Halorubrum species) and anaerobic members of Methanomicrobia. These results also provided evidence for the presence of members of the genus Halohasta in this environment. qPCR results revealed that Archaea were more abundant in studied samples than Bacteria. The sulfate-reducing Bacteria were also found abundant (~ one-third of the bacterial community) and outnumbered methanogens, suggesting their potential important role in this sulfate-rich and hypersaline ecosystem.


Subject(s)
Lakes/microbiology , Microbiota , Salinity , Archaea/classification , Archaea/genetics , Archaea/isolation & purification , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Extreme Environments , Lakes/chemistry
11.
Curr Microbiol ; 74(4): 449-454, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28213662

ABSTRACT

Three sulfate-reducing bacterial strains designated SM40T, SM41, and SM43 were isolated from marine sediment in the region of Skhira located in the Gulf of Gabes (Tunisia). These strains grew in anaerobic media with phosphogypsum as a sulfate source and sodium lactate as an electron and carbon source. One of them, strain SM40T, was characterized by phenotypic and phylogenetic methods. Cells were ovoid, Gram-stain-negative and non-motile. The temperature limits for growth were 10 and 55 °C with an optimum at 35 °C and the pH range was 6.5-8.1 with an optimum at pH 7.5. Growth was observed at salinities ranging from 10 to 80 g NaCl l-1 with an optimum at 30 g NaCl l-1. Strain SM40T was able to utilize butanol, ethanol, formate, L-glucose, glycerol, lactate, propanol, propionate, and pyruvate as electron donors for the reduction of sulfate, sulfite, or thiosulfate to H2S. Without electron acceptors, strain SM40T fermented butanol and pyruvate. The DNA G+C content of strain SM40T was 52.6 mol %. Phylogenetic analysis based on the 16S rRNA gene sequence of the isolate revealed that strain SM40T was closely related to the species in the genus Desulfobulbus of the family Desulfobulbaceae. The sequence similarity between strain SM40 and Desulfobulbus marinus was 95.4%. The phylogenetic analysis, DNA G+C content, and differences in substrate utilization suggested that strain SM40 represents a new species of the genus Desulfobulbus, D. aggregans sp. nov. The type strain is strain SM40T (=DSM 28693T = JCM 19994T).


Subject(s)
Geologic Sediments/microbiology , Sulfur-Reducing Bacteria/metabolism , Bacterial Typing Techniques , Base Composition/genetics , DNA, Bacterial/genetics , Oxidation-Reduction , Phylogeny , RNA, Ribosomal, 16S/genetics , Seawater/microbiology , Sulfur-Reducing Bacteria/classification , Sulfur-Reducing Bacteria/genetics
12.
Waste Manag ; 61: 171-178, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28038905

ABSTRACT

Ulva rigida is a green macroalgae, abundantly available in the Mediterranean which offers a promising source for the production of valuable biomaterials, including methane. In this study, anaerobic digestion assays in a batch mode was performed to investigate the effects of various inocula as a mixture of fresh algae, bacteria, fungi and sediment collected from the coast of Sfax, on biogas production from Ulva rigida. The results revealed that the best inoculum to produce biogas and feed an anaerobic reactor is obtained through mixing decomposed macroalgae with anaerobic sludge and water, yielding into 408mL of biogas. The process was then investigated in a sequencing batch reactor (SBR) which led to an overall biogas production of 375mL with 40% of methane. Further co-digestion studies were performed in an anaerobic up-flow bioreactor using sugar wastewater as a co-substrate. A high biogas production yield of 114mL g-1 VSadded was obtained with 75% of methane. The co-digestion proposed in this work allowed the recovery of natural methane, providing a promising alternative to conventional anaerobic microbial fermentation using Tunisian green macroalgae. Finally, in order to identify the microbial diversity present in the reactor during anaerobic digestion of Ulva rigida, the prokaryotic diversity was investigated in this bioreactor by the denaturing gradient gel electrophoresis (DGGE) method targeting the 16S rRNA gene.


Subject(s)
Biofuels , Methane/biosynthesis , Ulva/metabolism , Waste Disposal, Fluid/methods , Anaerobiosis , Archaea/genetics , Bacteria/genetics , Food-Processing Industry , Microbial Consortia/genetics , Microbial Consortia/physiology , Polymerase Chain Reaction , Wastewater/chemistry
13.
Extremophiles ; 20(2): 125-38, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26724953

ABSTRACT

Prokaryotic diversity was investigated in a Tunisian salt lake, Chott El Jerid, by quantitative real-time PCR, denaturing gradient gel electrophoresis (DGGE) fingerprinting methods targeting the 16S rRNA gene and culture-dependent methods. Two different samples S1-10 and S2-10 were taken from under the salt crust of Chott El Jerid in the dry season. DGGE analysis revealed that bacterial sequences were related to Firmicutes, Proteobacteria, unclassified bacteria, and Deinococcus-Thermus phyla. Anaerobic fermentative and sulfate-reducing bacteria were also detected in this ecosystem. Within the domain archaea, all sequences were affiliated to Euryarchaeota phylum. Quantitative real-time PCR showed that 16S rRNA gene copy numbers of bacteria was 5 × 10(6) DNA copies g(-1) whereas archaea varied between 5 × 10(5) and 10(6) DNA copies g(-1) in these samples. Eight anaerobic halophilic fermentative bacterial strains were isolated and affiliated with the species Halanaerobium alcaliphilum, Halanaerobium saccharolyticum, and Sporohalobacter salinus. These data showed an abundant and diverse microbial community detected in the hypersaline thalassohaline environment of Chott El Jerid.


Subject(s)
Lakes/microbiology , Microbiota , Salinity , Salt Tolerance , Archaea/isolation & purification , Deinococcus/isolation & purification , Firmicutes/isolation & purification , Lakes/chemistry , Proteobacteria/isolation & purification , RNA, Ribosomal, 16S/genetics , Thermus/isolation & purification , Tunisia
14.
Biomed Res Int ; 2015: 929424, 2015.
Article in English | MEDLINE | ID: mdl-26339653

ABSTRACT

Two yeast strains are enriched and isolated from industrial refinery wastewater. These strains were observed for their ability to utilize several classes of petroleum hydrocarbons substrates, such as n-alkanes and aromatic hydrocarbons as a sole carbon source. Phylogenetic analysis based on the D1/D2 variable domain and the ITS-region sequences indicated that strains HC1 and HC4 were members of the genera Candida and Trichosporon, respectively. The mechanism of hydrocarbon uptaking by yeast, Candida, and Trichosporon has been studied by means of the kinetic analysis of hydrocarbons-degrading yeasts growth and substrate assimilation. Biodegradation capacity and biomass quantity were daily measured during twelve days by gravimetric analysis and gas chromatography coupled with mass spectrometry techniques. Removal of n-alkanes indicated a strong ability of hydrocarbon biodegradation by the isolated yeast strains. These two strains grew on long-chain n-alkane, diesel oil, and crude oil but failed to grow on short-chain n-alkane and aromatic hydrocarbons. Growth measurement attributes of the isolates, using n-hexadecane, diesel oil, and crude oil as substrates, showed that strain HC1 had better degradation for hydrocarbon substrates than strain HC4. In conclusion, these yeast strains can be useful for the bioremediation process and decreasing petroleum pollution in wastewater contaminated with petroleum hydrocarbons.


Subject(s)
Biodegradation, Environmental , Candida/genetics , Phylogeny , Trichosporon/genetics , Candida/metabolism , Humans , Hydrocarbons/adverse effects , Hydrocarbons/chemistry , Kinetics , Petroleum/toxicity , Petroleum Pollution , Trichosporon/metabolism , Wastewater , Water Pollutants, Chemical
15.
FEMS Microbiol Lett ; 362(14)2015 Jul.
Article in English | MEDLINE | ID: mdl-26085487

ABSTRACT

Hydrogen sulfide (H2S) and thiols (RSH) generated by the phosphate industry cause harmful effects on human health and quality of life. The present study aims to investigate and evaluate a bacterial strain CAT37 isolated from gas-washing wastewaters in terms of its properties and ability to degrade malodorous thiols. Gas-washing wastewater samples were submitted to physicochemical analyses and used for the isolation of thiol-degrading bacteria. The results from gas chromatography-mass spectrometry (GC-MS) analysis revealed that the isolated strain CAT37 was able to oxidize ∼99% of each thiol, decanethiol and dodecanethiol used as sole carbon and energy sources after 30 days of incubation at 37°C. The strain CAT37 displayed a biodegradative potential on several thiols known by their toxicity and odors. The results from phylogenetic and phenotypic analysis revealed that the CAT37 isolate belonged to the genus Brevibacillus, showing the highest sequence similarity to Brevibacillus agri. Overall, the results indicated that the strain CAT37 exhibited a number of attractive biodegradation abilities against thiols and could be considered a promising candidate for industrial application in future thiol biodeodorization strategies.


Subject(s)
Biodegradation, Environmental , Brevibacillus/isolation & purification , Brevibacillus/metabolism , Phosphates/metabolism , Sulfhydryl Compounds/metabolism , Wastewater/microbiology , Brevibacillus/genetics , Brevibacillus/growth & development , Gas Chromatography-Mass Spectrometry , Humans , Industrial Microbiology/methods , Odorants , Oxidation-Reduction , Phenotype , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Tunisia
16.
J Environ Sci (China) ; 30: 102-12, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25872714

ABSTRACT

The present work presents a study of the biological treatment of fish processing wastewater at salt concentration of 55 g/L. Wastewater was treated by both continuous stirred-tank reactor (CSTR) and membrane bioreactor (MBR) during 50 and 100 days, respectively. These biological processes involved salt-tolerant bacteria from natural hypersaline environments at different organic loading rates (OLRs). The phylogenetic analysis of the corresponding excised DGGE bands has demonstrated that the taxonomic affiliation of the most dominant species includes Halomonadaceae and Flavobacteriaceae families of the Proteobacteria (Gamma-proteobacteria class) and the Bacteroidetes phyla, respectively. The results of MBR were better than those of CSTR in the removal of total organic carbon with efficiencies from 97.9% to 98.6%. Nevertheless, salinity with increasing OLR aggravates fouling that requires more cleaning for a membrane in MBR while leads to deterioration of sludge settleability and effluent quality in CSTR.


Subject(s)
Bacteria/isolation & purification , Food Handling , Waste Disposal, Fluid/methods , Wastewater/analysis , Wastewater/microbiology , Water Pollutants, Chemical/analysis , Bacteria/genetics , DNA, Bacterial/genetics , Denaturing Gradient Gel Electrophoresis , Environmental Monitoring , Molecular Sequence Data , Phylogeny , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 18S/genetics , Salinity , Seafood , Sequence Analysis, DNA , Tunisia
17.
Int J Syst Evol Microbiol ; 65(Pt 2): 543-548, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25389147

ABSTRACT

Halophilic, obligately anaerobic, Gram-stain-negative bacterial strains were isolated from a sediment sample taken from under the salt crust of El-Jerid hypersaline lake in southern Tunisia by using tryptone or glucose as the substrate. One strain, CEJFT1B(T), was characterized phenotypically and phylogenetically. Cells were non-motile, non-spore-forming, short rods. Strain CEJFT1B(T) was able to grow in the presence of 5-30 % (w/v) NaCl (optimum 20 %) and at 30-60 °C (optimum 45 °C). It grew at pH 5.5-7.8 and the optimum pH for growth was 6.8. The isolate required yeast extract for growth. Substrates utilized by strain CEJFT1B(T) as the sole carbon source included glucose, fructose, sucrose, pyruvate, Casamino acids and starch. Individual amino acids such as glutamate, lysine, methionine, serine, tyrosine, and amino acid mixtures formed by the Stickland reaction such as alanine-glycine, valine-proline, leucine-proline, isoleucine-proline were also utilized. Products of glucose fermentation were acetate (major product), butyrate, H2 and CO2. The genomic DNA G+C content of strain CEJFT1B(T) was 32.3 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain CEJFT1B(T) should be assigned to the genus Sporohalobacter. The sequence similarity between strain CEJFT1B(T) and Sporohalobacter lortetii was 98.5 %, but DNA-DNA hybridization between the two strains revealed a relatedness value of 56.4 %, indicating that they are not related at the species level. The combination of phylogenetic analysis, DNA-DNA hybridization data, and differences in substrate utilization support the view that strain CEJFT1B(T) represents a novel species of the genus Sporohalobacter, for which the name Sporohalobacter salinus sp. nov. is proposed. The type strain is CEJFT1B(T) ( = DSM 26781(T) = JCM 19279(T)).


Subject(s)
Gram-Negative Anaerobic Bacteria/classification , Lakes/microbiology , Phylogeny , Salinity , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Fermentation , Geologic Sediments/microbiology , Gram-Negative Anaerobic Bacteria/genetics , Gram-Negative Anaerobic Bacteria/isolation & purification , Molecular Sequence Data , Nucleic Acid Hybridization , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Tunisia
18.
J Basic Microbiol ; 52(4): 408-18, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22052657

ABSTRACT

A biosurfactant-producing bacterium (Staphylococcus sp. strain 1E) was isolated from an Algerian crude oil contaminated soil. Biosurfactant production was tested with different carbon sources using the surface tension measurement and the oil displacement test. Olive oil produced the highest reduction in surface tension (25.9 dynes cm(-1)). Crude oil presented the best substrate for 1E biosurfactant emulsification activity. The biosurfactant produced by strain 1E reduced the growth medium surface tension below 30 dynes cm(-1). This reduction was also obtained in cell-free filtrates. Biosurfactant produced by strain 1E showed stability in a wide range of pH (from 2 to 12), temperature (from 4 to 55 °C) and salinity (from 0 to 300 g l(-1)) variations. The biosurfactant produced by strain 1E belonged to lipopeptide group and also constituted an antibacterial activity againt the pathogenic bacteria such as Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Bacillus subtilis. Phenanthrene solubility in water was enhanced by biosurfactant addition. Our results suggest that the 1E biosurfactant has interesting properties for its application in bioremediation of hydrocarbons contaminated sites.


Subject(s)
Biodegradation, Environmental , Hydrocarbons/metabolism , Staphylococcus/metabolism , Surface-Active Agents/metabolism , Algeria , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Bacillus subtilis/drug effects , Culture Media/chemistry , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Emulsions/metabolism , Escherichia coli/drug effects , Lipopeptides/isolation & purification , Lipopeptides/metabolism , Lipopeptides/pharmacology , Molecular Sequence Data , Petroleum/microbiology , Pseudomonas aeruginosa/drug effects , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Soil Microbiology , Soil Pollutants , Staphylococcus/drug effects , Staphylococcus/isolation & purification , Surface-Active Agents/isolation & purification , Surface-Active Agents/pharmacology
19.
J Hazard Mater ; 189(1-2): 427-34, 2011 May 15.
Article in English | MEDLINE | ID: mdl-21419572

ABSTRACT

A continuously stirred tank bioreactor (CSTR) was used to optimize feasible and reliable bioprocess system in order to treat hydrocarbon-rich industrial wastewaters. A successful bioremediation was developed by an efficient acclimatized microbial consortium. After an experimental period of 225 days, the process was shown to be highly efficient in decontaminating the wastewater. The performance of the bioaugmented reactor was demonstrated by the reduction of COD rates up to 95%. The residual total petroleum hydrocarbon (TPH) decreased from 320 mg TPH l(-1) to 8 mg TPH l(-1). Analysis using gas chromatography-mass spectrometry (GC-MS) identified 26 hydrocarbons. The use of the mixed cultures demonstrated high degradation performance for hydrocarbons range n-alkanes (C10-C35). Six microbial isolates from the CSTR were characterized and species identification was confirmed by sequencing the 16S rRNA genes. The partial 16S rRNA gene sequences demonstrated that 5 strains were closely related to Aeromonas punctata (Aeromonas caviae), Bacillus cereus, Ochrobactrum intermedium, Stenotrophomonas maltophilia and Rhodococcus sp. The 6th isolate was affiliated to genera Achromobacter. Besides, the treated wastewater could be considered as non toxic according to the phytotoxicity test since the germination index of Lepidium sativum ranged between 57 and 95%. The treatment provided satisfactory results and presents a feasible technology for the treatment of hydrocarbon-rich wastewater from petrochemical industries and petroleum refineries.


Subject(s)
Biodegradation, Environmental , Hydrocarbons/metabolism , Industrial Waste/prevention & control , Petroleum/metabolism , Waste Disposal, Fluid/methods , Water Purification/methods , Bacteria/isolation & purification , Bioreactors , Microbial Consortia , Toxicity Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...