Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Transplantation ; 72(8): 1408-16, 2001 Oct 27.
Article in English | MEDLINE | ID: mdl-11685113

ABSTRACT

BACKGROUND: We have shown that treatment with molecularly engineered, allochimeric [alpha1 hl/u]-RT1.Aa class I MHC antigens bearing donor-type Wistar-Furth (WF, RT1.Au) amino acid substitutions for host-type ACI (RTI.Aa) sequences in the alpha1-helical region induces donor-specific tolerance to cardiac allografts in rat recipients. This study examined the effect of allochimeric molecules on the development of chronic rejection. METHODS: Allochimeric [alpha1 hl/u]-RT1.Aa class I MHC antigenic extracts (1 mg) were administered via the portal vein into ACI recipients of WF hearts on the day of transplantation in conjunction with subtherapeutic oral cyclosporine (CsA, 10 mg/kg/day, days 0-2). Control groups included recipients of syngeneic grafts and ACI recipients of WF heart allografts treated with high-dose CsA (10 mg/kg/day, days 0-6). RESULTS: WF hearts in ACI rats receiving 7 days of CsA exhibited myocardial fibrosis, perivascular inflammation, and intimal hyperplasia at day 80. At day 120, these grafts displayed severe chronic rejection with global architectural disorganization, ventricular fibrosis, intimal hyperplasia, and progressive luminal narrowing. In contrast, WF hearts in rats treated with [alpha1 hl/u]-RT1.Aa molecules revealed only mild perivascular fibrosis, minimal intimal thickening, and preserved myocardial architecture. Alloantibody analysis demonstrated no IgM alloantibodies in all groups. An attenuated, but detectable, anti-WF IgG response was present in recipients receiving allochimeric molecules, with IgG1 and IgG2a subclasses predominating. Immunohistochemical analysis of allografts demonstrated minimal T cell infiltration and IgG binding to vascular endothelium. CONCLUSION: Treatment with allochimeric molecules prevents the development of chronic rejection. Such effect may be in part caused by deviation of host alloantibody responses.


Subject(s)
Graft Rejection/prevention & control , Heart Transplantation/immunology , Histocompatibility Antigens/immunology , Isoantibodies/biosynthesis , Recombinant Fusion Proteins/immunology , Amino Acid Sequence , Animals , Chronic Disease , Cyclosporine/pharmacology , Graft Survival , Immunoglobulin G/biosynthesis , Immunoglobulin G/classification , Immunohistochemistry , Male , Molecular Sequence Data , Muscle, Smooth, Vascular/pathology , Myocardium/pathology , Rats , Rats, Inbred ACI , Rats, Inbred WF
6.
Transplantation ; 67(1): 5-18, 1999 Jan 15.
Article in English | MEDLINE | ID: mdl-9921790

ABSTRACT

BACKGROUND: There are limited experimental data on the nature of the humoral response elicited in humans against pig antigens. In this study, we have examined the xenoantibody (XAb) response in eight patients with acute liver failure exposed to pig hepatocytes after treatment with the bioartificial liver (BAL). METHODS: Patients' plasma samples obtained before and after BAL treatment were tested for IgM and IgG XAbs, IgG subclasses, and XAb cytotoxicity, using enzyme-linked immunosorbent assay and flow-cytometric assays. The characterization of pig aortic endothelial cell (PAEC) surface xenoantigens was analyzed by immunoprecipitation. RESULTS: We observed by day 10, a strong anti-pig IgG and IgM XAb response in patients undergoing two or more BAL treatments, with a significant increase in all the IgG subclasses; in contrast, XAb titers did not change if the patients received only one BAL treatment. The majority of the XAbs produced to porcine antigens were primarily specific for the alphaGal epitope. Both IgG and IgM XAbs were cytotoxic to PAECs, and the cytotoxic activity of IgG was associated with high levels of IgG1 and IgG3 subclasses, known to be efficient on complement activation. The characterization of porcine surface antigens demonstrated that IgM human XAbs, before and after BAL exposure, recognized xenoantigens on PAECs with similar molecular weights, suggesting that the same population of XAbs were present in the patients before and after exposure to pig antigens. CONCLUSIONS: Repetitive exposure of humans to porcine antigens after BAL treatment, results in a strong IgG and IgM XAb responses that are primarily directed against the alphaGal epitope. These XAbs are cytotoxic to PAECs and the IgG toxicity correlates with high IgG1 and IgG3 levels. Our data also suggest that no new XAb specificity emerges after porcine exposure.


Subject(s)
Antibodies, Heterophile/immunology , Liver Failure/immunology , Liver Failure/surgery , Liver, Artificial , Liver/cytology , Animals , Antibody Formation/physiology , Antibody-Dependent Cell Cytotoxicity/physiology , Antigens, Heterophile/immunology , Aorta/immunology , Endothelium, Vascular/immunology , Epitopes/immunology , Equipment Design , Humans , Immunoglobulin G/analysis , Immunoglobulin Isotypes/analysis , Immunoglobulin M/immunology , Liver/immunology , Liver/physiology , Swine/immunology
9.
Transplantation ; 64(12): 1665-70, 1997 Dec 27.
Article in English | MEDLINE | ID: mdl-9422399

ABSTRACT

We have recently demonstrated that cardiac allograft rejection in the PVG.R8-to-PVG.1U rat strain combination involves the recognition of a isolated class I (RT1.Aa) molecules as peptides in the context of the recipient MHC molecules. Three synthetic peptides (P1, P2, and P3) corresponding to the alpha-helices of the RT1.Aa molecule served as T-cell epitopes for graft rejection. In this study, we demonstrate that two of these peptides (P2 and P3) are sufficient to induce immune nonresponsiveness (median survival time >237 days) to cardiac allografts when presented to the recipient immune system in the thymus 7 days before transplantation. This effect was time dependent, as intrathymic inoculation 60 days before transplantation did not prolong graft survival (median survival time=12 days). Previous studies have demonstrated a critical role for alloantibody responses in mediating graft rejection in this rat strain combination. We, therefore, studied the role alloantibody responses may play in the observed immune nonresponsiveness. The titers of alloantibody in serum samples harvested from graft recipients at different times after transplantation were measured. We used recipient primary aortic endothelial cells genetically manipulated to express the donor RT1.Aa molecule as targets in an enzyme-linked immunosorbent assay. High titers of anti-RT1.Aa IgM antibody were detected in unmanipulated controls at the time of graft rejection. The IgM antibody switched to high IgG titers in intrathymically inoculated rats with accelerated or delayed rejection. Graft rejection in intrathymically manipulated recipients that had achieved a transient state of immunological nonresponsiveness correlated with higher titers of the IgG2b alloantibody. In marked contrast, the long-term graft survivors expressed undetectable or low levels of the IgG2b antibody and moderate to high levels of the IgG1 and IgG2a subclasses. These data suggest that the IgG2b alloantibody may contribute to the rejection reaction, whereas IgG1 and IgG2a may be involved in active enhancement of graft survival.


Subject(s)
Heart Transplantation/immunology , Histocompatibility Antigens Class I/immunology , Immunosuppression Therapy/methods , Isoantibodies/immunology , Acute Disease , Animals , Graft Rejection/immunology , Graft Survival , Immunoglobulin G/immunology , Peptides/immunology , Rats , Rats, Inbred Strains , Thymus Gland/immunology , Tissue Donors
SELECTION OF CITATIONS
SEARCH DETAIL
...