Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomater Sci ; 11(18): 6013-6034, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37522312

ABSTRACT

Polyhydroxyalkanoates (PHAs) are a family of natural microbial biopolyesters with the same basic chemical structure and diverse side chain groups. Based on their excellent biodegradability, biocompatibility, thermoplastic properties and diversity, PHAs are highly promising medical biomaterials and elements of medical devices for applications in tissue engineering and drug delivery. However, due to the high cost of biotechnological production, most PHAs have yet to be applied in the clinic and have only been studied at laboratory scale. This review focuses on the biosynthesis, diversity, physical properties, biodegradability and biosafety of PHAs. We also discuss optimization strategies for improved microbial production of commercial PHAs via novel synthetic biology tools. Moreover, we also systematically summarize various medical devices based on PHAs and related design approaches for medical applications, including tissue repair and drug delivery. The main degradation product of PHAs, 3-hydroxybutyrate (3HB), is recognized as a new functional molecule for cancer therapy and immune regulation. Although PHAs still account for only a small percentage of medical polymers, up-and-coming novel medical PHA devices will enter the clinical translation stage in the next few years.


Subject(s)
Polyhydroxyalkanoates , Polyhydroxyalkanoates/chemistry , Biocompatible Materials/chemistry , Tissue Engineering , Drug Delivery Systems
2.
Biomater Transl ; 4(4): 234-247, 2023.
Article in English | MEDLINE | ID: mdl-38282701

ABSTRACT

Infection and rejection in musculoskeletal trauma often pose challenges for natural healing, prompting the exploration of biomimetic organ and tissue transplantation as a common alternative solution. Polyhydroxyalkanoates (PHAs) are a large family of biopolyesters synthesised in microorganism, demonstrating excellent biocompatibility and controllable biodegradability for tissue remodelling and drug delivery. With different monomer-combination and polymer-types, multi-mechanical properties of PHAs making them have great application prospects in medical devices with stretching, compression, twist in long time, especially in musculoskeletal tissue engineering. This review systematically summarises the applications of PHAs in multiple tissues repair and drug release, encompassing areas such as bone, cartilage, joint, skin, tendons, ligament, cardiovascular tissue, and nervous tissue. It also discusses challenges encountered in their application, including high production costs, potential cytotoxicity, and uncontrollable particle size distribution. In conclusion, PHAs offer a compelling avenue for musculoskeletal system applications, striking a balance between biocompatibility and mechanical performance. However, addressing challenges in their production and application requires further research to unleash their full potential in tackling the complexities of musculoskeletal regeneration.

SELECTION OF CITATIONS
SEARCH DETAIL
...