Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(24)2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38139871

ABSTRACT

This article introduces a one-step extrusion-based fused deposition modeling (FDM) approach for the challenging separation of polypropylene (PP) and polyethylene terephthalate (PET) during recycling. A shear screw printer (SSP) with shear elements was designed, and it was compared to a conventional single-screw printer (CSP) to investigate the differences in print stability, degradation levels, tensile performance, molecular orientation, and crystallization when preparing recycled PP and recycled PET blends. Although the retention effect of the SSP screw slightly increases the degradation of the blended rPP/rPET, the strong shear (2.6 × 104 s-1) applied near the extrusion exit improves the blending efficiency. The SSP also enhances molecular orientation, modulus of the parts, and reduces performance fluctuations. Additionally, the SSP has the potential to simplify the recycling process, enabling the transformation of blended recycled materials into products with just one melt process.

2.
Materials (Basel) ; 16(11)2023 May 27.
Article in English | MEDLINE | ID: mdl-37297146

ABSTRACT

Shear and thermal processing can greatly influence nanoparticles' orientation and dispersion, affecting the nanocomposites' conductivity and mechanical properties. The synergistic effects of shear flow and Carbon nanotubes (CNTs) nucleating ability on the crystallization mechanisms have been proven. In this study, Polylactic acid/Carbon nanotubes (PLA/CNTs) nanocomposites were produced by three different molding methods: compression molding (CM), conventional injection molding (IM), and interval injection molding (IntM). Solid annealing at 80 °C for 4 h and pre-melt annealing at 120 °C for 3 h was applied to research the CNTs' nucleation effect and the crystallized volume exclusion effect on the electrical conductivity and mechanical properties. The volume exclusion effect only significantly impacts the oriented CNTs, causing the conductivity along the transverse direction to rise by about seven orders of magnitude. In addition, the tensile modulus of the nanocomposites decreases with the increased crystallinity, while the tensile strength and modulus decrease.

3.
Polymers (Basel) ; 15(10)2023 May 19.
Article in English | MEDLINE | ID: mdl-37242948

ABSTRACT

The orientation and dispersion of nanoparticles can greatly influence the conductivity and mechanical properties of nanocomposites. In this study, the Polypropylene/ Carbon Nanotubes (PP/CNTs) nanocomposites were produced using three different molding methods, i.e., compression molding (CM), conventional injection molding (IM), and interval injection molding (IntM). Various CNTs content and shear conditions give CNTs different dispersion and orientation states. Then, three electrical percolation thresholds (4 wt.% CM, 6 wt.% IM, and 9 wt.% IntM) were obtained by various CNTs dispersion and orientations. Agglomerate dispersion (Adis), agglomerate orientation (Aori), and molecular orientation (Mori) are used to quantify the CNTs dispersion and orientation degree. IntM uses high shear to break the agglomerates and promote the Aori, Mori, and Adis. Large Aori and Mori can create a path along the flow direction, which lead to an electrical anisotropy of nearly six orders of magnitude in the flow and transverse direction. On the other hand, when CM and IM samples already build the conductive network, IntM can triple the Adis and destroy the network. Moreover, mechanical properties are also been discussed, such as the increase in tensile strength with Aori and Mori but showing independence with Adis. This paper proves that the high dispersion of CNTs agglomerate goes against forming a conductivity network. At the same time, the increased orientation of CNTs causes the electric current to flow only in the orientation direction. It helps to prepare PP/CNTs nanocomposites on demand by understanding the influence of CNTs dispersion and orientation on mechanical and electrical properties.

4.
Polymers (Basel) ; 11(11)2019 Oct 30.
Article in English | MEDLINE | ID: mdl-31671568

ABSTRACT

Morphological evolution under shear, during different injection processes, is an important issue in the phase morphology control, electrical conductivity, and physical properties of immiscible polymer blends. In the current work, conductive nanocomposites were produced through three different injection-molding methods, namely, conventional injection molding, multi-flow vibration injection molding (MFVIM), and pressure vibration injection molding (PVIM). Carbon nanotubes in the polyamide (PA) phase and the morphology of the PA phase were controlled by various injection methods. For MFVIM, multi-flows provided consistently stable shear forces, and mechanical properties were considerably improved after the application of high shear stress. Shear forces improved electrical property along the flow direction by forming an oriented conductive path. However, shear does not always promote the formation of conductive paths. Oscillatory shear stress from a vibration system of PVIM can tear a conductive path, thereby reducing electrical conductivity by six orders of magnitude. Although unstable high shear forces can greatly improve mechanical properties compared with the conventional injection molding (CIM) sample, oscillatory shear stress increases the dispersion of the PA phase. These interesting results provide insights into the production of nanocomposites with high mechanical properties and suitable electrical conductivity by efficient injection molding.

5.
Polymers (Basel) ; 11(2)2019 Feb 02.
Article in English | MEDLINE | ID: mdl-30960231

ABSTRACT

In situ microfibrillation and multiflow vibrate injection molding (MFVIM) technologies were combined to control the phase morphology of blended polypropylene (PP) and poly(ethylene terephthalate) (PET), wherein PP is the majority phase. Four kinds of phase structures were formed using different processing methods. As the PET content changes, the best choice of phase structure also changes. When the PP matrix is unoriented, oriented microfibrillar PET can increase the mechanical properties at an appropriate PET content. However, if the PP matrix is an oriented structure (shish-kebab), only the use of unoriented spherical PET can significantly improve the impact strength. Besides this, the compatibilizer polyolefin grafted maleic anhydride (POE-g-MA) can cover the PET in either spherical or microfibrillar shape to form a core⁻shell structure, which tends to improve both the yield and impact strength. We focused on the influence of all composing aspects-fibrillation of the dispersed PET, PP matrix crystalline morphology, and compatibilized interface-on the mechanical properties of PP/PET blends as well as potential synergies between these components. Overall, we provided a theoretical basis for the mechanical recycling of immiscible blends.

6.
Polymers (Basel) ; 10(3)2018 Mar 08.
Article in English | MEDLINE | ID: mdl-30966326

ABSTRACT

The main goal of this research is to study the development of crystalline morphology and compare it to various mechanical properties of microfibrillar composites (MFCs) based on polypropylene (PP) and poly(ethylene terephthalate) (PET), by adding a functional compatibilizer and a non-functional rubber in two different steps in the processing sequence. The MFCs were prepared at a weight ratio of 80/20 PP/PET by twin screw extrusion followed by cold drawing and injection moulding. The non-functionalized polyolefin-based elastomer (POE) and the functional compatibilizer (i.e., POE grafted with maleic anhydride (POE-g-MA)) were added in a fixed weight percentage at two stages: during extrusion or during injection moulding. The morphology observations showed differences in crystalline structure, and the PP spherulite size was reduced in all MFCs due to the presence of PET fibrils. Their relationship with the mechanical performances of the composite was studied by tensile and impact tests. Adding the functional compatibilizer during extrusions showed better mechanical properties compared to MFCs. Overall, a clear relationship was identified between processing, structure and properties.

7.
Polymers (Basel) ; 10(10)2018 Oct 02.
Article in English | MEDLINE | ID: mdl-30961018

ABSTRACT

Improving the mechanical properties of immiscible PP/PET blend is of practical significance especially in the recycling process of multi-layered plastic solid waste. In this work, a multi-flow vibration injection molding technology (MFVIM) was hired to convert the crystalline morphology of the PP matrix from spherulite into shish-kebab. POE⁻g⁻MA was added as compatibilizer, and results showed that the compatibilization effect consisted in the formation of a core-shell structure by dispersing the POE⁻g⁻MA into the PP matrix to encapsulate the PET. It was found that the joint action of shish-kebab crystals and spherical core-shell structure enabled excellent mechanical performance with a balance of strength and toughness for samples containing 10 wt % PET and 4 wt % POE⁻g⁻MA, of which the yield strength and impact strengths were 50.87 MPa and 13.71 kJ/m², respectively. This work demonstrates a new approach to optimize mechanical properties of immiscible PP/PET blends, which is very meaningful for the effective recycling of challenging plastic wastes.

SELECTION OF CITATIONS
SEARCH DETAIL
...