Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 8(1): 1782, 2017 11 24.
Article in English | MEDLINE | ID: mdl-29176549

ABSTRACT

Digital image sensors in hemispherical geometries offer unique imaging advantages over their planar counterparts, such as wide field of view and low aberrations. Deforming miniature semiconductor-based sensors with high-spatial resolution into such format is challenging. Here we report a simple origami approach for fabricating single-crystalline silicon-based focal plane arrays and artificial compound eyes that have hemisphere-like structures. Convex isogonal polyhedral concepts allow certain combinations of polygons to fold into spherical formats. Using each polygon block as a sensor pixel, the silicon-based devices are shaped into maps of truncated icosahedron and fabricated on flexible sheets and further folded either into a concave or convex hemisphere. These two electronic eye prototypes represent simple and low-cost methods as well as flexible optimization parameters in terms of pixel density and design. Results demonstrated in this work combined with miniature size and simplicity of the design establish practical technology for integration with conventional electronic devices.


Subject(s)
Electronics/instrumentation , Eye, Artificial , Silicon/chemistry , Equipment Design , Semiconductors
2.
Sci Adv ; 3(7): e1602783, 2017 07.
Article in English | MEDLINE | ID: mdl-28695202

ABSTRACT

Miniaturization of optoelectronic devices offers tremendous performance gain. As the volume of photoactive material decreases, optoelectronic performance improves, including the operation speed, the signal-to-noise ratio, and the internal quantum efficiency. Over the past decades, researchers have managed to reduce the volume of photoactive materials in solar cells and photodetectors by orders of magnitude. However, two issues arise when one continues to thin down the photoactive layers to the nanometer scale (for example, <50 nm). First, light-matter interaction becomes weak, resulting in incomplete photon absorption and low quantum efficiency. Second, it is difficult to obtain ultrathin materials with single-crystalline quality. We introduce a method to overcome these two challenges simultaneously. It uses conventional bulk semiconductor wafers, such as Si, Ge, and GaAs, to realize single-crystalline films on foreign substrates that are designed for enhanced light-matter interaction. We use a high-yield and high-throughput method to demonstrate nanometer-thin photodetectors with significantly enhanced light absorption based on nanocavity interference mechanism. These single-crystalline nanomembrane photodetectors also exhibit unique optoelectronic properties, such as the strong field effect and spectral selectivity.

3.
ACS Appl Mater Interfaces ; 7(38): 21602-9, 2015 Sep 30.
Article in English | MEDLINE | ID: mdl-26372432

ABSTRACT

Flexible infrared (IR)-responsive materials, such as polymer nanocomposites, that exhibit high levels of IR responses and short response times are highly desirable for various IR sensing applications. However, the IR-induced photoresponses of carbon nanotube (CNT)/polymer nanocomposites are typically limited to 25%. Herein, we report on a family of unique nanocomposite films consisting of multi-walled carbon nanotubes (MWCNTs) uniformly distributed in a form-stable phase change material (PCM) that exhibited rapid, dramatic, reversible, and cyclic IR-regulated responses in air. The 3 wt % MWCNT/PCM nanocomposite films demonstrated cyclic, IR-regulated on/off electrical conductivity ratios of 11.6 ± 0.6 and 570.0 ± 70.5 times at IR powers of 7.3 and 23.6 mW/mm(2), respectively. The excellent performances exhibited by the MWCNT/PCM nanocomposite films were largely attributed to the IR-regulated cyclic and reversible form-stable phase transitions occurring in the PCM matrix due to MWCNT's excellent photoabsorption and thermal conversion capabilities, which subsequently affected the thickness of the interfacial PCM between adjacent conductive MWCNTs and thus the electron tunneling efficiency between the MWCNTs. Our findings suggest that these unique MWCNT/PCM nanocomposites offer promising new options for high-performance and flexible optoelectronic devices, including thermal imaging, IR sensing, and optical communication.

4.
Nat Commun ; 6: 7170, 2015 May 26.
Article in English | MEDLINE | ID: mdl-26006731

ABSTRACT

Today's consumer electronics, such as cell phones, tablets and other portable electronic devices, are typically made of non-renewable, non-biodegradable, and sometimes potentially toxic (for example, gallium arsenide) materials. These consumer electronics are frequently upgraded or discarded, leading to serious environmental contamination. Thus, electronic systems consisting of renewable and biodegradable materials and minimal amount of potentially toxic materials are desirable. Here we report high-performance flexible microwave and digital electronics that consume the smallest amount of potentially toxic materials on biobased, biodegradable and flexible cellulose nanofibril papers. Furthermore, we demonstrate gallium arsenide microwave devices, the consumer wireless workhorse, in a transferrable thin-film form. Successful fabrication of key electrical components on the flexible cellulose nanofibril paper with comparable performance to their rigid counterparts and clear demonstration of fungal biodegradation of the cellulose-nanofibril-based electronics suggest that it is feasible to fabricate high-performance flexible electronics using ecofriendly materials.


Subject(s)
Arsenicals , Gallium , Nanofibers , Paper , Silicon , Smartphone , Biodegradation, Environmental , Cellulose , Microwaves , Phanerochaete
5.
ACS Appl Mater Interfaces ; 7(4): 2641-7, 2015 Feb 04.
Article in English | MEDLINE | ID: mdl-25588062

ABSTRACT

Innovative photoresponsive materials are needed to address the complexity of optical control systems. Here, we report a new type of photoresponsive nanomaterial composed of graphene and a form-stable phase change material (PCM) that exhibited a 3 orders of magnitude change in electrical resistivity upon light illumination while retaining its overall original solid form at the macroscopic level. This dramatic change in electrical resistivity also occurred reversibly through the on/off control of light illumination. This was attributed to the reversible phase transition (i.e., melting/recrystallization) behavior of the microscopic crystalline domains present in the form-stable PCM. The reversible phase transition observed in the graphene/PCM nanocomposite was induced by a reversible temperature change through the on/off control of light illumination because graphene can effectively absorb light energy and convert it to thermal energy. In addition, this graphene/PCM nanocomposite also possessed excellent mechanical properties. Such photoresponsive materials have many potential applications, including flexible electronics.

6.
Nanotechnology ; 22(22): 225602, 2011 Jun 03.
Article in English | MEDLINE | ID: mdl-21454935

ABSTRACT

An aqueous solution-based doping strategy was developed for controlled doping impurity atoms into a ZnO nanowire (NW) lattice. Through this approach, antimony-doped ZnO NWs were successfully synthesized in an aqueous solution containing zinc nitrate and hexamethylenetetramine with antimony acetate as the dopant source. By introducing glycolate ions into the solution, a soluble antimony precursor (antimony glycolate) was formed and a good NW morphology with a controlled antimony doping concentration was successfully achieved. A doping concentration study suggested an antimony glycolate absorption doping mechanism. By fabricating and characterizing NW-based field effect transistors (FETs), stable p-type conductivity was observed. A field effect mobility of 1.2 cm(2) V(-1) s(-1) and a carrier concentration of 6 × 10(17) cm(-3) were achieved. Electrostatic force microscopy (EFM) characterization on doped and undoped ZnO NWs further illustrated the shift of the metal-semiconductor barrier due to Sb doping. This work provided an effective large-scale synthesis strategy for doping ZnO NWs in aqueous solution.

SELECTION OF CITATIONS
SEARCH DETAIL
...