Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Medchemcomm ; 8(8): 1631-1639, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-30108874

ABSTRACT

A series of triazoles as miconazole analogues was designed, synthesized and characterized by IR, NMR, MS and HRMS. All the newly prepared compounds were screened for their antifungal activities against five kinds of fungi. The bioactive assay showed that most of the synthesized compounds exhibited good or even stronger antifungal activities in comparison with the reference drugs miconazole and fluconazole. In particular, the 3,4-dichlorobenzyl derivative 5b showed a comparable or superior activity against all the tested fungal strains to standard drugs, and formed a supramolecular complex with CYP51 via the hydrogen bond between the 4-nitrogen of the triazole nucleus and the histidine residue. Preliminary experiments revealed that both of the active molecules 5b and 9c could intercalate into calf thymus DNAs, which might block DNA replication to exhibit their powerful antifungal abilities. Further studies indicated that compound 5b might be stored and transported by human serum albumin through hydrophobic interactions, specific electrostatic interactions and hydrogen bonds. These results strongly suggested that compound 5b could serve as a promising antifungal candidate.

2.
Eur J Med Chem ; 46(9): 4391-402, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21794961

ABSTRACT

A series of novel fluconazoliums were synthesized and their bioactive evaluation as potential antibacterial and antifungal agents were described. Some target compounds displayed good and broad-spectrum antimicrobial activities with low MIC values ranging from 0.25 to 64 µg/mL against all the tested strains, including three Gram-positive bacteria (Staphylococcus aureus, MRSA and Bacillus subtilis), three Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa and Bacillus proteus) as well as two fungi (Candida albicans and Aspergillus fumigatus). Among all tested title compounds, the octyl, dichlorobenzyl, naphthyl and naphthalimino derivatives gave comparable or even better antibacterial and antifungal efficiency in comparison with the reference drugs Fluconazole, Chloromycin and Norfloxacin.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/pharmacology , Fluconazole/analogs & derivatives , Fluconazole/pharmacology , Anti-Bacterial Agents/chemistry , Fluconazole/chemical synthesis , Magnetic Resonance Spectroscopy , Microbial Sensitivity Tests , Spectrometry, Mass, Electrospray Ionization , Spectrophotometry, Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...