Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(21)2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37958578

ABSTRACT

The emergence of phage-resistant bacterial strains is one of the biggest challenges for phage therapy. However, the emerging phage-resistant bacteria are often accompanied by adaptive trade-offs, which supports a therapeutic strategy called "phage steering". The key to phage steering is to guide the bacterial population toward an evolutionary direction that is favorable for treatment. Thus, it is important to systematically investigate the impacts of phages targeting different bacterial receptors on the fitness of the bacterial population. Herein, we employed 20 different phages to impose strong evolutionary pressure on the host Pseudomonas aeruginosa PAO1 and examined the genetic and phenotypic responses of their phage-resistant mutants. Among these strains with impaired adsorptions, four types of mutations associated with bacterial receptors were identified, namely, lipopolysaccharides (LPSs), type IV pili (T4Ps), outer membrane proteins (OMPs), and exopolysaccharides (EPSs). PAO1, responding to LPS- and EPS-dependent phage infections, mostly showed significant growth impairment and virulence attenuation. Most mutants with T4P-related mutations exhibited a significant decrease in motility and biofilm formation ability, while the mutants with OMP-related mutations required the lowest fitness cost out of the bacterial populations. Apart from fitness costs, PAO1 strains might lose their resistance to antibiotics when counteracting with phages, such as the presence of large-fragment mutants in this study, which may inspire the usage of phage-antibiotic combination strategies. This work provides methods that leverage the merits of phage resistance relative to obtaining therapeutically beneficial outcomes with respect to phage-steering strategies.


Subject(s)
Bacteriophages , Bacteriophages/genetics , Virulence , Lipopolysaccharides , Biological Evolution , Anti-Bacterial Agents , Pseudomonas aeruginosa/physiology
2.
Front Bioeng Biotechnol ; 9: 741364, 2021.
Article in English | MEDLINE | ID: mdl-34631682

ABSTRACT

Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a growing family of natural products that exhibit a range of structures and bioactivities. Initially assembled from the twenty proteinogenic amino acids in a ribosome-dependent manner, RiPPs assume their peculiar bioactive structures through various post-translational modifications. The essential modifications representative of each subfamily of RiPP are performed on a precursor peptide by the so-called processing enzymes; however, various tailoring enzymes can also embellish the precursor peptide or processed peptide with additional functional groups. Lasso peptides are an interesting subfamily of RiPPs characterized by their unique lariat knot-like structure, wherein the C-terminal tail is inserted through a macrolactam ring fused by an isopeptide bond between the N-terminal amino group and an acidic side chain. Until recently, relatively few lasso peptides were found to be tailored with extra functional groups. Nevertheless, the development of new routes to diversify lasso peptides and thus introduce novel or enhanced biological, medicinally relevant, or catalytic properties is appealing. In this review, we highlight several strategies through which lasso peptides have been successfully modified and provide a brief overview of the latest findings on the tailoring of these peptides. We also propose future directions for lasso peptide tailoring as well as potential applications for these peptides in hybrid catalyst design.

3.
J Comput Chem ; 42(7): 484-491, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33326120

ABSTRACT

A detailed reaction mechanism of acetylene cyclotrimerization catalyzed by V(i PrNPMe2 )3 Fe-PMe3 (denote as CAT), a heterobimetallic complex featuring V-Fe triple bond, was computationally investigated using density functional theory. The calculated results show that the first acetylene firstly attaches to the V atom of CAT to get a four-membered ring structure through [2 + 2] cycloaddition reaction. For the second acetylene addition, there are two cyclotrimerization mechanisms, outer sphere mechanism and inner mechanism. The inner sphere reaction pathway is the main reaction pathway. By replacing the V with Nb and Ta, Fe with Ru and Os, a series of new catalysts are screened computationally. The calculated results show that, all of the nine heterobimetallic complexes show high activity at mild condition. The energy barrier of the rate determining step is related to the natural population analysis (NPA) charge of M' and the Wiberg bond index (WBI) of M-M' bond. The more negative NPA charge of M' and the smaller WBI of M-M' bond, the lower energy barrier is.

SELECTION OF CITATIONS
SEARCH DETAIL
...