Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Cosmet Dermatol ; 22(2): 661-668, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36237150

ABSTRACT

BACKGROUND: The endothelial-mesenchymal transition (EndMT) is an important mechanism in tissue regeneration and the development of organ fibrosis. Whether EndMT occurs in wound healing and scarring remains unknown. MATERIALS AND METHODS: The isolated cells from the normal dermal tissue and the wound tissue of mouse with full-thickness skin wound, and human scar tissue sections were performed with CD31/factorVII and α-SMA immunohistochemical staining and H and E staining. The ratio of factor VII or CD31/α-SMA double-positive cells in factor VII-positive cells was assessed in the isolated cells and in scar tissues. RESULTS: In this study, we found that approximately 27-60% of ECs coexpressed VII factor and α-SMA in the isolated cells from the wound tissues of mice, which was significantly higher than that of normal dermal tissue cells. Accordingly, the number of CD31/α-SMA double-positive cells in mouse wound tissue sections was also significantly more than that in normal dermal tissue sections. In scar tissues, in addition to high-density microvessels, a large number of proliferative ECs in scar strama and CD31/α-SMA double-positive cells were also found. Approximately 46.82 to 84.11% of ECs and 68.77 to 95.25% of myofibroblasts coexpressed VII factor and α-SMA, and these two values in hypertrophic scars were significantly higher than those in keloids. CONCLUSION: These results confirmed that ECs might contribute to the emergence of myofibroblasts in the wound and scar tissue via the process of EndMT.


Subject(s)
Cicatrix, Hypertrophic , Keloid , Humans , Mice , Animals , Myofibroblasts/pathology , Factor VII , Wound Healing , Cicatrix, Hypertrophic/pathology
2.
Stem Cell Res Ther ; 11(1): 434, 2020 10 08.
Article in English | MEDLINE | ID: mdl-33032649

ABSTRACT

BACKGROUND: The transplantation of bone marrow mesenchymal stem cells (BMSCs) is a promising therapeutic strategy for wound healing. However, the poor migration capacity and low survival rate of transplanted BMSCs in wounds weaken their potential application. OBJECTIVE: To identify the optimal protocol for BMSCs preconditioned with H2O2 and improve the therapeutic efficacy using H2O2-preconditioned BMSCs in wound healing. METHODS: Mouse BMSCs were exposed to various concentrations of H2O2, and the key cellular functional properties were assessed to determine the optimal precondition with H2O2. The H2O2-preconditioned BMSCs were transplanted into mice with full-thickness excisional wounds to evaluate their healing capacity and tissue engraftment. RESULTS: Treatment BMSCs with 50 µM H2O2 for 12 h could significantly enhance their proliferation, migration, and survival by maximizing the upregulation of cyclin D1, SDF-1, and its receptors CXCR4/7 expressions, and activating the PI3K/Akt/mTOR pathway, but inhibiting the expression of p16 and GSK-3ß. Meanwhile, oxidative stress-induced BMSC apoptosis was also significantly attenuated by the same protocol pretreatment with a decreased ratio of Bax/Bcl-2 and cleaved caspase-9/3 expression. Moreover, after the identification of the optimal protocol of H2O2 precondition in vitro, the migration and tissue engraftment of transfused BMSCs with H2O2 preconditioning were dramatically increased into the wound site as compared to the un-preconditioned BMSCs. The increased microvessel density and the speedy closure of the wounds were observed after the transfusion of H2O2-preconditioned BMSCs. CONCLUSIONS: The findings suggested that 50 µM H2O2 pretreated for 12 h is the optimal precondition for the transplantation of BMSCs, which gives a considerable insight that this protocol may be served as a promising candidate for improving the therapeutic potential of BMSCs for wound healing.


Subject(s)
Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Animals , Bone Marrow Cells , Glycogen Synthase Kinase 3 beta , Hydrogen Peroxide , Mice , Phosphatidylinositol 3-Kinases , Wound Healing
SELECTION OF CITATIONS
SEARCH DETAIL
...