Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Neural Netw Learn Syst ; 34(10): 6798-6812, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37021900

ABSTRACT

Representation and learning of concepts are critical problems in data science and cognitive science. However, the existing research about concept learning has one prevalent disadvantage: incomplete and complex cognitive. Meanwhile, as a practical mathematical tool for concept representation and concept learning, two-way learning (2WL) also has some issues leading to the stagnation of its related research: the concept can only learn from specific information granules and lacks a concept evolution mechanism. To overcome these challenges, we propose the two-way concept-cognitive learning (TCCL) method for enhancing the flexibility and evolution ability of 2WL for concept learning. We first analyze the fundamental relationship between two-way granule concepts in the cognitive system to build a novel cognitive mechanism. Furthermore, the movement three-way decision (M-3WD) method is introduced to 2WL to study the concept evolution mechanism via the concept movement viewpoint. Unlike the existing 2WL method, the primary consideration of TCCL is two-way concept evolution rather than information granules transformation. Finally, to interpret and help understand TCCL, an example analysis and some experiments on various datasets are carried out to demonstrate our method's effectiveness. The results show that TCCL is more flexible and less time-consuming than 2WL, and meanwhile, TCCL can also learn the same concept as the latter method in concept learning. In addition, from the perspective of concept learning ability, TCCL is more generalization of concepts than the granule concept cognitive learning model (CCLM).

2.
Neural Netw ; 57: 1-11, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24874183

ABSTRACT

Support vector regression (SVR) techniques are aimed at discovering a linear or nonlinear structure hidden in sample data. Most existing regression techniques take the assumption that the error distribution is Gaussian. However, it was observed that the noise in some real-world applications, such as wind power forecasting and direction of the arrival estimation problem, does not satisfy Gaussian distribution, but a beta distribution, Laplacian distribution, or other models. In these cases the current regression techniques are not optimal. According to the Bayesian approach, we derive a general loss function and develop a technique of the uniform model of ν-support vector regression for the general noise model (N-SVR). The Augmented Lagrange Multiplier method is introduced to solve N-SVR. Numerical experiments on artificial data sets, UCI data and short-term wind speed prediction are conducted. The results show the effectiveness of the proposed technique.


Subject(s)
Support Vector Machine , Wind , Bayes Theorem , Meteorology/methods , Models, Theoretical , Normal Distribution , Regression Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...