Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Sci Adv ; 10(2): eadl1803, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38198544

ABSTRACT

The ability to manipulate the multiple properties of light diversifies light-matter interaction and light-driven applications. Here, using quantum control, we introduce an approach that enables the amplitude, sign, and even configuration of the generated light fields to be manipulated in an all-optical manner. Following this approach, we demonstrate the generation of "flying doughnut" terahertz (THz) pulses. We show that the single-cycle THz pulse radiated from the dynamic ring current has an electric field structure that is azimuthally polarized and that the space- and time-resolved magnetic field has a strong, isolated longitudinal component. We apply the flying doughnut pulse for a spectroscopic measurement of the water vapor in ambient air. Pulses such as these will serve as unique probes for spectroscopy, imaging, telecommunications, and magnetic materials.

2.
Nat Chem ; 15(9): 1224-1228, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37264105

ABSTRACT

The H2-H2 molecular dimer is of fundamental importance in the study of chemical interactions because of its unique bonding properties and its ability to model more complex systems. The trihydrogen cation H3+ is also a key intermediate in a range of chemical processes in interstellar environments, such as the formation of various organic molecules and early stars. However, the unexpected high abundance of H3+ in molecular clouds remains challenging to explain. Here using near-infrared, femtosecond laser pulses and coincidence momentum imaging, we find that the dominant channel after photoionization of a deuterium molecular dimer (D2-D2) is the ejection of a deuterium atom within a few hundred femtoseconds, leading to the formation of D3+. The formation mechanism is supported and well-reproduced by ab initio molecular dynamics simulations. This pathway of D3+ formation from ultracold D2-D2 gas may provide insights into the high abundance of H3+ in the interstellar medium.

3.
Nanophotonics ; 11(4): 787-795, 2022 Jan 04.
Article in English | MEDLINE | ID: mdl-35880004

ABSTRACT

Structuring light-matter interaction at a deeply subwavelength scale is fundamental to optical metamaterials and metasurfaces. Conventionally, the operation of a metasurface is determined by the collective electric polarization response of its lithographically defined structures. The inseparability of electric polarization and current density provides the opportunity to construct metasurfaces from current elements instead of nanostructures. Here, we realize metasurfaces using structured light rather than structured materials. Using coherent control, we transfer structure from light to transient currents in a semiconductor, which act as a source for terahertz radiation. A spatial light modulator is used to control the spatial structure of the currents and the resulting terahertz radiation with a resolution of 5.6 ± 0.8 µm , or approximately λ / 54 at a frequency of 1 THz. The independence of the currents from any predefined structures and the maturity of spatial light modulator technology enable this metasurface to be reconfigured with unprecedented flexibility.

4.
J Phys Chem A ; 125(47): 10138-10143, 2021 Dec 02.
Article in English | MEDLINE | ID: mdl-34788037

ABSTRACT

We performed a time-resolved spectroscopy experiment on the dissociation of oxygen molecules after the interaction with intense extreme-ultraviolet (XUV) light from the free-electron laser in Hamburg at Deutsches Elektronen-Synchrotron. Using an XUV-pump/XUV-probe transient-absorption geometry with a split-and-delay unit, we observe the onset of electronic transitions in the O2+ cation near 50 eV photon energy, marking the end of the progression from a molecule to two isolated atoms. We observe two different time scales of 290 ± 53 and 180 ± 76 fs for the emergence of different ionic transitions, indicating different dissociation pathways taken by the departing oxygen atoms. With regard to the emerging opportunities of tuning the central frequencies of pump and probe pulses and of increasing the probe-pulse bandwidth, future pump-probe transient-absorption experiments are expected to provide a detailed view of the coupled nuclear and electronic dynamics during molecular dissociation.

5.
Faraday Discuss ; 228(0): 519-536, 2021 May 27.
Article in English | MEDLINE | ID: mdl-33575691

ABSTRACT

The emergence of ultra-intense extreme-ultraviolet (XUV) and X-ray free-electron lasers (FELs) has opened the door for the experimental realization of non-linear XUV and X-ray spectroscopy techniques. Here we demonstrate an experimental setup for an all-XUV transient absorption spectroscopy method for gas-phase targets at the FEL. The setup combines a high spectral resolving power of E/ΔE ≈ 1500 with sub-femtosecond interferometric resolution, and covers a broad XUV photon-energy range between approximately 20 and 110 eV. We demonstrate the feasibility of this setup firstly on a neon target. Here, we intensity- and time-resolve key aspects of non-linear XUV-FEL light-matter interactions, namely the non-resonant ionization dynamics and resonant coupling dynamics of bound states, including XUV-induced Stark shifts of energy levels. Secondly, we show that this setup is capable of tracking the XUV-initiated dissociation dynamics of small molecular targets (oxygen and diiodomethane) with site-specific resolution, by measuring the XUV transient absorption spectrum. In general, benefitting from a single-shot detection capability, we show that the setup and method provides single-shot phase-locked XUV pulse pairs. This lays the foundation to perform, in the future, experiments as a function of the XUV interferometric time delay and the relative phase, which enables advanced coherent non-linear spectroscopy schemes in the XUV and X-ray spectral range.

6.
Nat Commun ; 12(1): 643, 2021 Jan 28.
Article in English | MEDLINE | ID: mdl-33510142

ABSTRACT

High-intensity ultrashort pulses at extreme ultraviolet (XUV) and x-ray photon energies, delivered by state-of-the-art free-electron lasers (FELs), are revolutionizing the field of ultrafast spectroscopy. For crossing the next frontiers of research, precise, reliable and practical photonic tools for the spectro-temporal characterization of the pulses are becoming steadily more important. Here, we experimentally demonstrate a technique for the direct measurement of the frequency chirp of extreme-ultraviolet free-electron laser pulses based on fundamental nonlinear optics. It is implemented in XUV-only pump-probe transient-absorption geometry and provides in-situ information on the time-energy structure of FEL pulses. Using a rate-equation model for the time-dependent absorbance changes of an ionized neon target, we show how the frequency chirp can be directly extracted and quantified from measured data. Since the method does not rely on an additional external field, we expect a widespread implementation at FELs benefiting multiple science fields by in-situ on-target measurement and optimization of FEL-pulse properties.

7.
Phys Rev Lett ; 125(17): 173201, 2020 Oct 23.
Article in English | MEDLINE | ID: mdl-33156666

ABSTRACT

Laser-induced rotational wave packets of H_{2} and D_{2} molecules were experimentally measured in real time by using two sequential 25-fs laser pulses and a reaction microscope. By measuring the time-dependent yields of the above-threshold dissociation and the enhanced ionization of the molecule, we observed a few-femtosecond time delay between the two dissociation channels for both H_{2} and D_{2}. The delay was interpreted and reproduced by a classical model that considers enhanced ionization and thus additional interaction within the laser pulse. We demonstrate that by accurately measuring the phase of the rotational wave packet in hydrogen molecules we can resolve dissociation dynamics which is occurring within a fraction of a molecular rotation. Such a rotational clock is a general concept applicable to sequential fragmentation processes in other molecules.

8.
Phys Rev Lett ; 123(10): 103001, 2019 Sep 06.
Article in English | MEDLINE | ID: mdl-31573300

ABSTRACT

We demonstrate time-resolved nonlinear extreme-ultraviolet absorption spectroscopy on multiply charged ions, here applied to the doubly charged neon ion, driven by a phase-locked sequence of two intense free-electron laser pulses. Absorption signatures of resonance lines due to 2p-3d bound-bound transitions between the spin-orbit multiplets ^{3}P_{0,1,2} and ^{3}D_{1,2,3} of the transiently produced doubly charged Ne^{2+} ion are revealed, with time-dependent spectral changes over a time-delay range of (2.4±0.3) fs. Furthermore, we observe 10-meV-scale spectral shifts of these resonances owing to the ac Stark effect. We use a time-dependent quantum model to explain the observations by an enhanced coupling of the ionic quantum states with the partially coherent free-electron laser radiation when the phase-locked pump and probe pulses precisely overlap in time.

9.
Phys Rev Lett ; 119(2): 023201, 2017 Jul 14.
Article in English | MEDLINE | ID: mdl-28753333

ABSTRACT

The first hundred attoseconds of the electron dynamics during strong field tunneling ionization are investigated. We quantify theoretically how the electron's classical trajectories in the continuum emerge from the tunneling process and test the results with those achieved in parallel from attoclock measurements. An especially high sensitivity on the tunneling barrier is accomplished here by comparing the momentum distributions of two atomic species of slightly deviating atomic potentials (argon and krypton) being ionized under absolutely identical conditions with near-infrared laser pulses (1300 nm). The agreement between experiment and theory provides clear evidence for a nonzero tunneling time delay and a nonvanishing longitudinal momentum of the electron at the "tunnel exit."

10.
Phys Rev Lett ; 118(18): 183201, 2017 May 05.
Article in English | MEDLINE | ID: mdl-28524692

ABSTRACT

Channel-selective electron emission from strong-field photoionization of H_{2} molecules is experimentally investigated by using ultrashort laser pulses and a reaction microscope. The electron momenta and energy spectra in coincidence with bound and dissociative ionization channels are compared. Surprisingly, we observed an enhancement of the photoelectron yield in the low-energy region for the bound ionization channel. By further investigation of asymmetrical electron emission using two-color laser pulses, this enhancement is understood as the population of the autoionizing states of H_{2} molecules in which vibrational energy is transferred to electronic energy. This general mechanism provides access to the vibrational-state distribution of molecular ions produced in a strong-field interaction.

11.
Phys Rev Lett ; 115(3): 033003, 2015 Jul 17.
Article in English | MEDLINE | ID: mdl-26230787

ABSTRACT

The evolution of a V-type three-level system is studied, whose two resonances are coherently excited and coupled by two ultrashort laser pump and probe pulses, separated by a varying time delay. We relate the quantum dynamics of the excited multilevel system to the absorption spectrum of the transmitted probe pulse. In particular, by analyzing the quantum evolution of the system, we interpret how atomic phases are differently encoded in the time-delay-dependent spectral absorption profiles when the pump pulse either precedes or follows the probe pulse. This scheme is experimentally applied to atomic Rb, whose fine-structure-split 5s (2)S{1/2}→5p(2)P{1/2} and 5s(2)S_{1/2}→5p(2)P{3/2} transitions are driven by the combined action of a pump pulse of variable intensity and a delayed probe pulse. The provided understanding of the relationship between quantum phases and absorption spectra represents an important step towards full time-dependent phase reconstruction (quantum holography) of bound-state wave packets in strong-field light-matter interactions with atoms, molecules, and solids.

SELECTION OF CITATIONS
SEARCH DETAIL
...