Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 118(9): 096101, 2017 Mar 03.
Article in English | MEDLINE | ID: mdl-28306305

ABSTRACT

The conventional belief, based on the Read-Shockley model for the grain rotation mechanism, has been that smaller grains rotate more under stress due to the motion of grain boundary dislocations. However, in our high-pressure synchrotron Laue x-ray microdiffraction experiments, 70 nm nickel particles are found to rotate more than any other grain size. We infer that the reversal in the size dependence of the grain rotation arises from the crossover between the grain boundary dislocation-mediated and grain interior dislocation-mediated deformation mechanisms. The dislocation activities in the grain interiors are evidenced by the deformation texture of nickel nanocrystals. This new finding reshapes our view on the mechanism of grain rotation and helps us to better understand the plastic deformation of nanomaterials, particularly of the competing effects of grain boundary and grain interior dislocations.

2.
Proc Natl Acad Sci U S A ; 110(46): 18402-6, 2013 Nov 12.
Article in English | MEDLINE | ID: mdl-24167283

ABSTRACT

Knowledge of the high-pressure behavior of carbon dioxide (CO2), an important planetary material found in Venus, Earth, and Mars, is vital to the study of the evolution and dynamics of the planetary interiors as well as to the fundamental understanding of the C-O bonding and interaction between the molecules. Recent studies have revealed a number of crystalline polymorphs (CO2-I to -VII) and an amorphous phase under high pressure-temperature conditions. Nevertheless, the reported phase stability field and transition pressures at room temperature are poorly defined, especially for the amorphous phase. Here we shed light on the successive pressure-induced local structural changes and the molecular-to-nonmolecular transition of CO2 at room temperature by performing an in situ study of the local electronic structure using X-ray Raman scattering, aided by first-principle exciton calculations. We show that the transition from CO2-I to CO2-III was initiated at around 7.4 GPa, and completed at about 17 GPa. The present study also shows that at ~37 GPa, molecular CO2 starts to polymerize to an extended structure with fourfold coordinated carbon and minor CO3 and CO-like species. The observed pressure is more than 10 GPa below previously reported. The disappearance of the minority species at 63(± 3) GPa suggests that a previously unknown phase transition within the nonmolecular phase of CO2 has occurred.


Subject(s)
Carbon Dioxide/chemistry , Molecular Conformation , Pressure , Spectrum Analysis, Raman , X-Ray Absorption Spectroscopy
SELECTION OF CITATIONS
SEARCH DETAIL
...