Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chim Acta ; 1278: 341754, 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37709480

ABSTRACT

Non-invasive wearable sweat glucose sensors are expected to be highly desirable for personalized diabetes management. Therefore, developing facile, convenient, and scalable manufacturing method of such wearable sensors is urgently needed. Herein, we report a simple and low-cost stamping-vacuum filtration dry transfer (SVFDT) method for construction of a wearable sweat glucose electrochemical sensor. In this patch, a three-electrode array template was made by using a polyvinyl chloride (PVC) stamp, followed by the preparation of multiwalled carbon nanotubes (MWCNTs)/polydimethylsiloxane (PDMS) (MP) film electrode using the vacuum-filtration dry transfer method. In addition, for further enhancing the conductivity of the electrode, another similar stamp with a raised surface dipping carbon nanotubes (CNTs) conductive coating was stamped on the surface of the MP electrode to obtain CNTs/MWCNTs/PDMS (CMP) electrode. CMP electrode was modified with the enzyme-like Ni-Co metal-organic framework (MOF) material which showed good electro-catalytic activity and achieved high sensitivity for glucose detection with a low detection limit of 6.78 µM and a wide linear range of 20 µM - 1.1 mM. More importantly, the Ni-Co MOF modified CMP (NCMP) electrode also displayed high stability under stretching and bending conditions. Finally, the sweat absorbent cloth was combined with the NCMP film electrode to form a wearable flexible electrochemical sensor patch, which could adhere to the skin to enrich sweat and realize real-time detection of sweat glucose with high accuracy. This SVFDT method can also be applied to the fabrication of other electronic devices.


Subject(s)
Metal-Organic Frameworks , Nanotubes, Carbon , Wearable Electronic Devices , Sweat , Dimethylpolysiloxanes , Electrodes , Glucose
2.
Talanta ; 260: 124620, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37148688

ABSTRACT

Monitoring cortisol, a hormone released by the adrenal cortex in response to stress, is essential to evaluate the endocrine response to stress stimuli. While the current cortisol sensing methods require large laboratory settings, complex assay, and professional personnel. Herein, a novel flexible and wearable electrochemical aptasensor based on a Ni-Co metal-organic frameworks (MOF) nanosheet-decorated carbon nanotubes (CNTs)/polyurethane (PU) film is developed for rapid and reliable detection of cortisol in sweat. First, the CNTs/PU (CP) film was prepared by a modified wet spinning technology, and the CNTs/polyvinyl alcohol (PVA) solution was thermally deposited on the surface of CP film to form the highly flexible CNTs/PVA/CP (CCP) film with excellent conductivity. Then aminated Ni-Co MOF nanosheet prepared by a facile solvothermal method was conjugated with streptavidin and modified on the CCP film. Biofunctional MOF can effectively capture cortisol aptamer due to its excellent specific surface area. In addition, the MOF with peroxidase activity can catalytic oxidization of hydroquinone (HQ) by hydrogen peroxide (H2O2), which could amplify the peak current signal. The catalytic activity of Ni-Co MOF was substantially suppressed in the HQ/H2O2 system due to the formation of the aptamer-cortisol complex, which reduced the current signal, thereby realizing highly sensitive and selective detection of cortisol. The sensor has a linear range of 0.1-100 ng/mL and a detection limit of 0.032 ng/mL. Meanwhile, the sensor showed high accuracy for cortisol detection under mechanical deformation conditions. More importantly, the prepared MOF/CCP film based three-electrode was assembled with the polydimethylsiloxane (PDMS) substrate, and the sweat-cloth was used as the sweat collection channel to fabricate a wearable sensor patch for monitoring of cortisol in volunteers' sweat in the morning and evening. This flexible and non-invasive sweat cortisol aptasensor shows great potential for quantitative stress monitoring and management.


Subject(s)
Biosensing Techniques , Metal-Organic Frameworks , Nanotubes, Carbon , Wearable Electronic Devices , Humans , Sweat , Polyurethanes , Hydrocortisone , Hydrogen Peroxide , Biosensing Techniques/methods , Electrochemical Techniques/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...