Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 12(1): 1101, 2021 02 17.
Article in English | MEDLINE | ID: mdl-33597520

ABSTRACT

It is widely hypothesised that primeval life utilised small organic molecules as sources of carbon and energy. However, the presence of such primordial ingredients in early Earth habitats has not yet been demonstrated. Here we report the existence of indigenous organic molecules and gases in primary fluid inclusions in c. 3.5-billion-year-old barites (Dresser Formation, Pilbara Craton, Western Australia). The compounds identified (e.g., H2S, COS, CS2, CH4, acetic acid, organic (poly-)sulfanes, thiols) may have formed important substrates for purported ancestral sulfur and methanogenic metabolisms. They also include stable building blocks of methyl thioacetate (methanethiol, acetic acid) - a putative key agent in primordial energy metabolism and thus the emergence of life. Delivered by hydrothermal fluids, some of these compounds may have fuelled microbial communities associated with the barite deposits. Our findings demonstrate that early Archaean hydrothermal fluids contained essential primordial ingredients that provided fertile substrates for earliest life on our planet.


Subject(s)
Archaea/chemistry , Hydrogen Sulfide/analysis , Methane/analysis , Sulfhydryl Compounds/analysis , Barium Sulfate/analysis , Earth, Planet , Ecosystem , Environmental Microbiology , Evolution, Chemical , Gas Chromatography-Mass Spectrometry , Geography , Geologic Sediments/chemistry , Time Factors , Western Australia
2.
Astrobiology ; 19(11): 1339-1352, 2019 11.
Article in English | MEDLINE | ID: mdl-31532228

ABSTRACT

The Mars Organic Molecule Analyzer (MOMA) instrument on board ESA's ExoMars 2020 rover will be essential in the search for organic matter. MOMA applies gas chromatography-mass spectrometry (GC-MS) techniques that rely on thermal volatilization. Problematically, perchlorates and chlorates in martian soils and rocks become highly reactive during heating (>200°C) and can lead to oxidation and chlorination of organic compounds, potentially rendering them unidentifiable. Here, we analyzed a synthetic sample (alkanols and alkanoic acids on silica gel) and a Silurian chert with and without Mg-perchlorate to evaluate the applicability of MOMA-like GC-MS techniques to different sample types and assess the impact of perchlorate. We used a MOMA flight analog system coupled to a commercial GC-MS to perform MOMA-like pyrolysis, in situ derivatization, and in situ thermochemolysis. We show that pyrolysis can provide a sufficient overview of the organic inventory but is strongly affected by the presence of perchlorates. In situ derivatization facilitates the identification of functionalized organics but showed low efficiency for n-alkanoic acids. Thermochemolysis is shown to be an effective technique for the identification of both refractory and functional compounds. Most importantly, this technique was barely affected by perchlorates. Therefore, MOMA GC-MS analyses of martian surface/subsurface material may be less affected by perchlorates than commonly thought, in particular when applying the full range of available MOMA GC-MS techniques.


Subject(s)
Extraterrestrial Environment/chemistry , Mars , Organic Chemicals/analysis , Perchlorates/chemistry , Soil/chemistry , Exobiology/instrumentation , Exobiology/methods , Gas Chromatography-Mass Spectrometry/instrumentation , Gas Chromatography-Mass Spectrometry/methods , Hot Temperature/adverse effects , Oxidation-Reduction , Spacecraft/instrumentation , Volatilization
3.
Astrobiology ; 17(6-7): 655-685, 2017 Jul 01.
Article in English | MEDLINE | ID: mdl-31067288

ABSTRACT

The Mars Organic Molecule Analyzer (MOMA) instrument onboard the ESA/Roscosmos ExoMars rover (to launch in July, 2020) will analyze volatile and refractory organic compounds in martian surface and subsurface sediments. In this study, we describe the design, current status of development, and analytical capabilities of the instrument. Data acquired on preliminary MOMA flight-like hardware and experimental setups are also presented, illustrating their contribution to the overall science return of the mission. Key Words: Mars-Mass spectrometry-Life detection-Planetary instrumentation. Astrobiology 17, 655-685.

SELECTION OF CITATIONS
SEARCH DETAIL
...