Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Molecules ; 29(8)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38675669

ABSTRACT

Manganese catalysts that activate hydrogen peroxide carry out several different hydrocarbon oxidation reactions with high stereoselectivity. The commonly proposed mechanism for these reactions involves a key manganese(III)-hydroperoxo intermediate, which decays via O-O bond heterolysis to generate a Mn(V)-oxo species that institutes substrate oxidation. Due to the scarcity of characterized MnIII-hydroperoxo complexes, MnIII-alkylperoxo complexes are employed to understand factors that affect the mechanism of the O-O cleavage. Herein, we report a series of novel complexes, including two room-temperature-stable MnIII-alkylperoxo species, supported by a new amide-containing pentadentate ligand (6Medpaq5NO2). We use a combination of spectroscopic methods and density functional theory computations to probe the effects of the electronic changes in the ligand sphere trans to the hydroxo and alkylperoxo units to thermal stability and reactivity. The structural characterizations for both MnII(OTf)(6Medpaq5NO2) and [MnIII(OH)(6Medpaq5NO2)](OTf) were obtained via single-crystal X-ray crystallography. A perturbation to the ligand sphere allowed for a marked increase in reactivity towards an organic substrate, a modest change in the distribution of the O-O cleavage products from homolytic and heterolytic pathways, and little change in thermal stability.

2.
J Am Chem Soc ; 146(6): 3955-3962, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38295514

ABSTRACT

The local environment of a metal active site plays an important role in affecting the catalytic activity and selectivity. In recent studies, tailoring the behavior of a molybdenum-based active site via modulation of the first coordination sphere has led to improved thioanisole oxidation performance, but disentangling electronic effects from steric influences that arise from these modifications is nontrivial, especially in heterogeneous systems. To this end, the tunability of metal-organic frameworks (MOFs) makes them promising scaffolds for controlling the coordination sphere of a heterogeneous, catalytically active metal site while offering additional attractive features such as crystallinity and high porosity. Herein, we report a variety of MOF-supported Mo species, which were investigated for catalytic thioanisole oxidation to methyl phenyl sulfoxide and/or methyl phenyl sulfone using tert-butyl hydroperoxide (tBHP) as the oxidant. In particular, MOFs of contrasting node architectures were targeted, presenting a unique opportunity to investigate the stereoelectronic control of Mo active sites in a systematic manner. A Zr6-based MOF, NU-1000, was employed along with its sulfated analogue Zr6-based NU-1000-SO4 to anchor a dioxomolybdenum species, which enabled examination of support-mediated active site polarizability on catalytic performance. In addition, a MOF containing a mixed metal node, Mo-MFU-4l, was used to probe the stereoelectronic impact of an N-donor ligand environment on the catalytic activity of the transmetalated Mo center. Characterization techniques, including single crystal X-ray diffraction, were concomitantly used with reaction time course profiles to better comprehend the dynamics of different Mo active sites, thus correlating structural change with activity.

3.
J Am Chem Soc ; 145(37): 20492-20502, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37672758

ABSTRACT

Metal-organic frameworks (MOFs) that contain open metal sites have the potential for storing hydrogen (H2) at ambient temperatures. In particular, Cu(I)-based MOFs demonstrate very high isosteric heats of adsorption for hydrogen relative to other reported MOFs with open metal sites. However, most of these Cu(I)-based MOFs are not stable in ambient conditions since the Cu(I) species display sensitivity toward moisture and can rapidly oxidize in air. As a result, researchers have focused on the synthesis of new air-stable Cu(I)-based materials for H2 storage. Here, we have developed a de novo synthetic strategy to generate a robust Cu(I)-based MOF, denoted as NU-2100, using a mixture of Cu/Zn precursors in which zinc acts as a catalyst to transform an intermediate MOF into NU-2100 without getting incorporated into the final MOF structure. NU-2100 is air-stable and displays one of the initial highest isosteric heats of adsorption (32 kJ/mol) with good hydrogen storage capability under ambient conditions (10.4 g/L, 233 K/100 bar to 296 K/5 bar). We further elucidated the H2 storage performance of NU-2100 using a combination of spectroscopic analysis and computational modeling studies. Overall, this new synthetic route may enable the design of additional stable Cu(I)-MOFs for next-generation hydrogen storage adsorbents at ambient temperatures.

4.
Dalton Trans ; 52(42): 15503-15509, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37577755

ABSTRACT

New Magnus' green salt (MGS) analogues, [M(dabdOH)2][MCl4]·2H2O (dabdOH = (2S,3S)-2,3-diaminobutane-1,4-diol; M = Pd (1) and M = Pt(2)), in which [M(dabdOH)2]2+ and [MCl4]2- are stacked alternately to form linear chains, were obtained as hexagonal plate crystals. The hexagonal shape and large crystal size are unprecedented features as MGS analogues. An unusual trigonal grade separation of chain complexes has been revealed by the structural analysis. 1 and 2 exhibited remarkable yellow and pink colours, respectively, which are derived from weak M⋯M interactions. The dabdOH ligand, which has an additional hydrogen donor group (hydroxy group), produces a multiple-hydrogen-bond network. The combination of intrachain and interchain hydrogen bonds gives a two-dimensional (2D) hydrogen-bond sheet, and each 2D sheet is indirectly connected by hydrogen bonds via lattice water molecules. The OH-functionalised ligand greatly increases the hydrophilicity of the MGS analogues and yields the largest single crystals of all MGS analogues reported so far. The trigonal grade-separated chain structure is likely due to the geometric matching between the periodicity of chains and the short axis width of the chain. This strategy opens up new insight for preparing large crystals of MGS analogues and for constructing trigonal grade-separated nanowires in molecular crystals.

5.
Acta Crystallogr E Crystallogr Commun ; 79(Pt 3): 201-206, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36909989

ABSTRACT

The dark-red title complex crystallized from an equimolar methanol solution of (E)-5-(ethyl-amino)-4-methyl-2-[(pyridin-2-yl)diazen-yl]phenol and CuCl2(phen) (phen = 1,10-phenanthroline) as a centrosymmetric dimer, [CuCl(C14H15N4O)]2. The Cu atoms are bridged by two Cl ligands and have a slightly distorted square-pyramidal coordination, where two N atoms from the azo and the pyridine moieties, a phenolic O and a Cl atom comprise the base and the other Cl occupies the apex position. The apical Cu-Cl bond, 2.6192 (4) Å, is longer than the basal one, 2.2985 (3) Å, due to Jahn-Teller distortion. The dimers are associated via weak inter-molecular hydrogen bonds and π-π stacking inter-actions between phenyl and pyridine rings. A monomeric by-product of the same reaction, [CuCl(phen)2]Cl·4H2O, has a trigonal-bipyramidal coordination of Cu with equatorial Cl ligand, and extensive outer-sphere disorder. In the structure of 4, the packing of cations leaves continuous channels containing disordered Cl- anions and solvent mol-ecules. The identity of the solvent (water or a water/methanol mixture) was not certain. The disordered anion/solvent regions comprise 28% of the unit-cell volume. The disorder was approximated by five partly occupied positions of the Cl- anion and ten positions of O atoms with a total occupancy of 3, giving a total of 48 electrons per asymmetric unit, in agreement with the integral electron density of 47.8 electrons in the disordered region, as was estimated using the BYPASS-type solvent-masking program [van der Sluis & Spek (1990). Acta Cryst. A46, 194-201].

6.
J Am Chem Soc ; 145(13): 7435-7445, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-36919617

ABSTRACT

Organophosphorus nerve agents are among the most toxic chemicals known and remain threats to humans due to their continued use despite international bans. Metal-organic frameworks (MOFs) have emerged as a class of heterogeneous catalysts with tunable structures that are capable of rapidly detoxifying these chemicals via hydrolysis at Lewis acidic active sites on the metal nodes. To date, the majority of studies in this field have focused on zirconium-based MOFs (Zr-MOFs) that contain hexanuclear Zr(IV) clusters, despite the large toolbox of Lewis acidic transition metal ions that are available to construct MOFs with similar catalytic properties. In particular, very few reports have disclosed the use of a Ti-based MOF (Ti-MOF) as a catalyst for this transformation even though Ti(IV) is a stronger Lewis acid than Zr(IV). In this work, we explored five Ti-MOFs (Ti-MFU-4l, NU-1012-NDC, MIL-125, Ti-MIL-101, MIL-177(LT), and MIL-177(HT)) that each contains Ti(IV) ions in unique coordination environments, including monometallic, bimetallic, octanuclear, triangular clusters, and extended chains, as catalysts to explore how both different node structures and different linkers (e.g., azolate and carboxylate) influence the binding and subsequent hydrolysis of an organophosphorus nerve agent simulant at Ti(IV)-based active sites in basic aqueous solutions. Experimental and theoretical studies confirm that Ti-MFU-4l, which contains monometallic Ti(IV)-OH species, exhibits the best catalytic performance among this series with a half-life of roughly 2 min. This places Ti-MFU-4l as one of the best nerve agent hydrolysis catalysts of any MOF reported to date.

7.
J Am Chem Soc ; 145(5): 3055-3063, 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36696577

ABSTRACT

Reticular chemistry allows for the rational assembly of metal-organic frameworks (MOFs) with designed structures and desirable functionalities for advanced applications. However, it remains challenging to construct multi-component MOFs with unprecedented complexity and control through insertion of secondary or ternary linkers. Herein, we demonstrate that a Zr-based MOF, NU-600 with a (4,6)-connected she topology, has been judiciously selected to employ a linker installation strategy to precisely insert two linear linkers with different lengths into two crystallographically distinct pockets in a one-pot, de novo reaction. We reveal that the hydrolytic stability of these linker-inserted MOFs can be remarkably reinforced by increasing the Zr6 node connectivity, while maintaining comparable water uptake capacity and pore-filling pressure as the pristine NU-600. Furthermore, introducing hydrophilic -OH groups into the linear linker backbones to construct multivariate MOFs can effectively shift the pore-filling step to lower partial pressures. This methodology demonstrates a powerful strategy to reinforce the structural stability of other MOF frameworks by increasing the connectivity of metal nodes, capable of encouraging developments in fundamental sciences and practical applications.

8.
ACS Appl Mater Interfaces ; 14(41): 47222-47229, 2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36215126

ABSTRACT

Hydrocarbon separations using porous materials such as metal-organic frameworks (MOFs) have been proposed to reduce the energy demands associated with current distillation-based methods. Despite the potential of these materials to distinguish hydrocarbons through thermodynamic or kinetic mechanisms, experimental data quantifying hydrocarbon transport in MOFs is lacking. Such mass transfer measurements are vital to elucidate structure-property relationships and design future high-performing separation materials. In this work, we aim to isolate the influence of pore size on hydrocarbon diffusion by studying a pair of isoreticular MOFs, Co2Cl2BBTA and Co2Cl2BTDD. We use a volumetric method to extract mass transport coefficients for six hydrocarbon probe molecules of varying size and chemical functionality. From these nonequilibrium mass transport measurements, we determine the rate-limiting diffusion mechanism and identify trends in hydrocarbon surface permeabilities in the MOFs based on pore size, hydrocarbon chain length, and temperature.

9.
J Am Chem Soc ; 144(37): 16883-16897, 2022 09 21.
Article in English | MEDLINE | ID: mdl-36089745

ABSTRACT

Understanding heterogeneous catalysts is a challenging pursuit due to surface site nonuniformity and aperiodicity in traditionally used materials. One example is sulfated metal oxides, which function as highly active catalysts and as supports for organometallic complexes. These applications are due to traits such as acidity, ability to act as a weakly coordinating ligand, and aptitude for promoting transformations via radical cation intermediates. Research is ongoing about the structural features of sulfated metal oxides that imbue the aforementioned properties, such as sulfate geometry and coordination. To better understand these materials, metal-organic frameworks (MOFs) have been targeted as structurally defined analogues. Composed of inorganic nodes and organic linkers, MOFs possess features such as high porosity and crystallinity, which make them attractive for mechanistic studies of heterogeneous catalysts. In this work, Zr6-based MOF NU-1000 is sulfated and characterized using techniques such as single crystal X-ray diffraction in addition to diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). The dynamic nature of the sulfate binding motif is found to transition from monodentate, to bidentate, to tridentate depending on the degree of hydration, as supported by density functional theory (DFT) calculations. Heightened Brønsted acidity compared to the parent MOF was observed upon sulfation and probed through trimethylphosphine oxide physisorption, ammonia sorption, in situ ammonia DRIFTS, and DFT studies. With the support structure benchmarked, an organoiridium complex was chemisorbed onto the sulfated MOF node, and the efficacy of this supported catalyst was demonstrated for stoichiometric and catalytic activation of benzene-d6 and toluene with structure-activity relationships derived.


Subject(s)
Metal-Organic Frameworks , Ammonia , Benzene , Catalysis , Ligands , Metal-Organic Frameworks/chemistry , Oxides/chemistry , Sulfates , Sulfur Oxides , Toluene , Zirconium/chemistry
10.
J Am Chem Soc ; 144(27): 12192-12201, 2022 07 13.
Article in English | MEDLINE | ID: mdl-35786901

ABSTRACT

The world is currently suffering socially, economically, and politically from the recent pandemic outbreak due to the coronavirus disease 2019 (COVID-19), and those in hospitals, schools, and elderly nursing homes face enhanced threats. Healthcare textiles, such as masks and medical staff gowns, are susceptible to contamination of various pathogenic microorganisms, including bacteria and viruses. Metal-organic frameworks (MOFs) can potentially address these challenges due to their tunable reactivity and ability to be incorporated as porous coatings on textile materials. Here, we report how incorporating titanium into the zirconium-pyrene-based MOF NU-1000, denoted as NU-1012, generates a highly reactive biocidal photocatalyst. This MOF features a rare ligand migration phenomenon, and both the Ti/Zr center and the pyrene linker act synergistically as dual active centers and widen the absorption band for this material, which results in enhanced reactive oxygen species generation upon visible light irradiation. Additionally, we found that the ligand migration process is generally applicable to other csq topology Zr-MOFs. Importantly, NU-1012 can be easily incorporated onto cotton textile cloths as a coating, and the resulting composite material demonstrates fast and potent biocidal activity against Gram-negative bacteria (Escherichia coli), Gram-positive bacteria (Staphylococcus epidermidis), and T7 bacteriophage virus with up to a 7-log(99.99999%) reduction within 1 h under simulated daylight.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Metal-Organic Frameworks , Aged , COVID-19/prevention & control , Escherichia coli , Humans , Ligands , Metal-Organic Frameworks/pharmacology , Pyrenes , Titanium/pharmacology
11.
Inorg Chem ; 61(25): 9504-9513, 2022 Jun 27.
Article in English | MEDLINE | ID: mdl-35695034

ABSTRACT

Halogen-bridged linear chain metal complexes (MX-Chains) are fascinating compounds that have a quasi-one-dimensional (1D) electronic system. In this study, we synthesized the first Ni-based MX-Chain compound having hydroxy groups, i.e., [Ni(dabdOH)2Br]Br2·[Ni(dabdOHx)2Br]0.5·(2-PrOH)0.25·(MeOH)0.25 (1·solvent, x = ∼0.6, dabdOH = (2S,3S)-2,3-diaminobutane-1,4-diol). Single-crystal X-ray diffraction revealed that the MX-Chains in 1·solvent formed sheets and single-chain structures in the superlattice. It suggested an MH-like state, whereas the polarized reflection and Raman spectra suggested a CDW-like state. Magnetic and electron spin resonance measurements revealed that both high-spin Ni(II) (∼15%) and low-spin Ni(III) (∼85%) sites are present in the chain structures, i.e., the metal sites show mixed valency. Therefore, we concluded that 1·solvent adopts an intermediate state between the MH and CDW states. Moreover, a single crystal of 1·solvent exhibited semiconductive characteristics along the chain direction. This finding represents a new structural and electronic state of 1D electronic systems as well as MX-Chains.

12.
Chem Commun (Camb) ; 58(25): 4028-4031, 2022 Mar 24.
Article in English | MEDLINE | ID: mdl-35254367

ABSTRACT

Metal-organic frameworks (MOFs) containing open metal sites are advantageous for wide applications. Here, carboxylate linkers are replaced with triazolate coordination in pre-formed Zn-MOF-74 via solvent-assisted linker exchange (SALE) to prepare the novel NU-250, within the known hexagonal channel-based MAF-X25 series that has not previously been synthesized de novo.


Subject(s)
Metal-Organic Frameworks , Zinc , Carboxylic Acids , Metals
13.
J Am Chem Soc ; 144(8): 3554-3563, 2022 03 02.
Article in English | MEDLINE | ID: mdl-35179900

ABSTRACT

Solid supports are crucial in heterogeneous catalysis due to their profound effects on catalytic activity and selectivity. However, elucidating the specific effects arising from such supports remains challenging. We selected a series of metal-organic frameworks (MOFs) with 8-connected Zr6 nodes as supports to deposit molybdenum(VI) onto to study the effects of pore environment and topology on the resulting Mo-supported catalysts. As characterized by X-ray absorption spectroscopy (XAS) and single-crystal X-ray diffraction (SCXRD), we modulated the chemical environments of the deposited Mo species. For Mo-NU-1000, the Mo species monodentately bound to the Zr6 nodes were anchored in the microporous c-pore, but for Mo-NU-1008 they were bound in the mesopore of Mo-NU-1008. Both monodentate and bidentate modes were found in the mesopore of Mo-NU-1200. Cyclohexene epoxidation with H2O2 was probed to evaluate the support effect on catalytic activity and to unveil the resulting structure-activity relationships. SCXRD and XAS studies demonstrated the atomically precise structural differences of the Mo binding motifs over the course of cyclohexene epoxidation. No apparent structural change was observed for Mo-NU-1000, whereas the monodentate mode of Mo species in Mo-NU-1008 and the monodentate and bidentate Mo species in Mo-NU-1200 evolved to a new bidentate mode bound between two adjacent oxygen atoms from the Zr6 node. This work demonstrates the great advantage of using MOF supports for constructing heterogeneous catalysts with modulated chemical environments of an active species and elucidating structure-activity relationships in the resulting reactions.


Subject(s)
Metal-Organic Frameworks , Molybdenum , Catalysis , Cyclohexenes , Hydrogen Peroxide , Metal-Organic Frameworks/chemistry , Molybdenum/chemistry , Structure-Activity Relationship
14.
ACS Appl Mater Interfaces ; 14(2): 3048-3056, 2022 Jan 19.
Article in English | MEDLINE | ID: mdl-34995051

ABSTRACT

The efficient capture of toxic gases, such as ammonia (NH3) and sulfur dioxide (SO2), can protect the general population and mitigate widespread air pollution. Metal-organic frameworks (MOFs) comprise a tunable class of adsorbents with high surface areas that can meet this challenge by selectively capturing these gases at low concentrations. In this work, we explored how modifying the metal ions in the node of an isostructural MOF series from a transition metal to a lanthanide or actinide influences the electronic environment of the node-based active site. Next, we investigated the adsorption properties of each MOF toward the relatively basic NH3 and relatively acidic SO2 gases. Within the NU-907 family of MOFs, we found that Zr6-NU-907 exhibits the best uptake toward NH3 at low pressures, while Th6-NU-907 demonstrates the best low-pressure performance for SO2 adsorption. Tracking the infrared (IR) stretching frequency of the node-based µ3-OH groups provides insights into the electronegativity of the metal ion and suggests that the most electronegative metal ion (Zr) affords the node with the best NH3 uptake at low pressures. In contrast, the Th6 node contains additional coordinated water groups relative to the other M6 nodes, which appears to yield the MOF with the greatest affinity for SO2 uptake that occurs predominately through reversible physisorption interactions. Finally, in situ NH3 IR spectroscopic studies indicate that both NH4+ and Lewis-bound NH3 species form during adsorption. Combined, these results suggest that tuning the electronic properties and structure of the node-based active site in an MOF presents a viable strategy to change the affinity of an MOF toward toxic gases.

15.
J Am Chem Soc ; 143(45): 18838-18843, 2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34752071

ABSTRACT

The development of adsorbents with molecular precision offers a promising strategy to enhance storage of hydrogen and methane─considered the fuel of the future and a transitional fuel, respectively─and to realize a carbon-neutral energy cycle. Herein we employ a postsynthetic modification strategy on a robust metal-organic framework (MOF), MFU-4l, to boost its storage capacity toward these clean energy gases. MFU-4l-Li displays one of the best volumetric deliverable hydrogen capacities of 50.2 g L-1 under combined temperature and pressure swing conditions (77 K/100 bar → 160 K/5 bar) while maintaining a moderately high gravimetric capacity of 9.4 wt %. Moreover, MFU-4l-Li demonstrates impressive methane storage performance with a 5-100 bar usable capacity of 251 cm3 (STP) cm-3 (0.38 g g-1) and 220 cm3 (STP) cm-3 (0.30 g g-1) at 270 and 296 K, respectively. Notably, these hydrogen and methane storage capacities are significantly improved compared to those of its isoreticular analogue, MFU-4l, and place MFU-4l-Li among the best MOF-based materials for this application.

16.
Dalton Trans ; 50(40): 14125-14129, 2021 Oct 19.
Article in English | MEDLINE | ID: mdl-34617548

ABSTRACT

The first interdigitated MX-type chain complex with infinite π-stacked arrays was synthesized. The synchronization between a Pt-Br⋯ chain and π-stacking periodicities led to the longest M-X-M distance (6.6978(15) Å) and nil or negligible intervalence charge transfer, which is essential to realize the Robin-Day class I mixed valence state in MX chains.

17.
J Am Chem Soc ; 143(26): 9893-9900, 2021 07 07.
Article in English | MEDLINE | ID: mdl-34160219

ABSTRACT

Organophosphorus nerve agents, a class of extremely toxic chemical warfare agents (CWAs), have remained a threat to humanity because of their continued use against civilian populations. To date, Zr(IV)-based metal organic framework (MOFs) are the most prevalent nerve agent hydrolysis catalysts, and relatively few reports disclose MOFs containing nodes with other Lewis acidic transition metals. In this work, we leveraged this synthetic tunability to explore how the identity of the transition metal node in the M-MFU-4l series of MOFs (M = Zn, Cu, Ni, Co) influences the catalytic performance toward the hydrolysis of the nerve agent simulant dimethyl (4-nitrophenyl)phosphate (DMNP). Experimental studies reveal that Cu-MFU-4l exhibits the best performance in this series with a half-life for hydrolysis of ∼2 min under these conditions. In contrast, both Ni- and Co-MFU-4l demonstrate significantly slower reactivity toward DMNP, as they both fail to surpass 30% conversion of DMNP after 1 h under analogous conditions. Further modification of the active site within Cu-MFU-4l is possible, and we found that although the identity of the anion coordinated to the Cu(II)-X (X = Cl-, HCOO-, ClO4-, NO3-) active site has little influence on the catalytic performance, reduction of the Cu(II) sites yields nodes that contain Cu(I) ions in a trigonal geometry with open metal sites, leading to remarkable catalytic activity with a half-life for hydrolysis less than 2 min. Computational studies indicate the Cu(I) sites exhibit stronger binding affinities than Cu(II) to both water and DMNP, which corroborates the experimental results.

18.
J Am Chem Soc ; 143(13): 5053-5059, 2021 04 07.
Article in English | MEDLINE | ID: mdl-33779165

ABSTRACT

The interaction of low-energy light with matter that leads to the production of high-energy light is known as photon upconversion. This phenomenon is of importance because of its potential applications in optoelectronics, energy harvesting, and the biomedical arena. Herein, we report a pillared-paddlewheel metal-organic framework (MOF), constructed from a tetrakis(4-carboxyphenyl)porphyrin sensitizer and a dipyridyl thiazolothiazole annihilator, designed for efficient triplet-triplet annihilation upconversion (TTA-UC). Single-crystal X-ray diffraction studies reveal that the Zn-metalated sensitizers are coordinated to Zn2 nodes in a paddlewheel fashion, forming 2D sheets, to which are linked annihilators, such that each sensitizer is connected to five of them. The precise arrangements of sensitizers with respect to annihilators, and the high annihilator-to-sensitizer ratio, facilitate Dexter energy transfer. This level of organization in an extended structure leads to a high TTA-UC efficiency of 1.95% (theoretical maximum = 50%) at an excitation power density of 25 mW cm-2.

19.
J Am Chem Soc ; 143(11): 4302-4310, 2021 03 24.
Article in English | MEDLINE | ID: mdl-33706512

ABSTRACT

The understanding of structure-activity relationships at the atomic level has played a profound role in heterogeneous catalysis, providing valuable insights into designing suitable heterogeneous catalysts. However, uncovering the detailed roles of how such active species' structures affect their catalytic performance remains a challenge owing to the lack of direct structural information on a specific active species. Herein, we deposited molybdenum(VI), an active species in oxidation reactions, on the Zr6 node of a mesoporous zirconium-based metal-organic framework (MOF) NU-1200, using solvothermal deposition in MOFs (SIM). Due to the high crystallinity of the NU-1200 support, the precise structure of the resulting molybdenum catalyst, Mo-NU-1200, was characterized through single-crystal X-ray diffraction (SCXRD). Two distinct anchoring modes of the molybdenum species were observed: one mode (Mo1), displaying an octahedral geometry, coordinated to the node through one terminal oxygen atom and the other mode (Mo2) coordinated to two adjacent Zr6 node oxygen atoms in a tetrahedral geometry. To investigate the role of base in the catalytic activity of these Mo centers, we assessed the activity of Mo-NU-1200 for the aerobic oxidation of 4-methoxybenzyl alcohol as a model reaction. The results revealed that Mo-NU-1200 exhibited remarkably higher catalytic reactivity under base-free conditions, while the presence of base inhibited the catalytic reactivity of this species. SCXRD studies revealed that the molybdenum binding motifs (structures of the supported metal on the Zr6 node in the MOF) changed over the course of the reactions. Following the oxidation without base, both pristine coordination modes (Mo1 and Mo2) evolved into a new coordination mode (Mo3), in which the molybdenum atom coordinated to two adjacent oxygen atoms from the Zr6 node in an octahedral geometry, while in the presence of base, the pristine Mo1 coordination mode evolved entirely into the pristine Mo2. This study demonstrates the direct observation of an active species' structural evolution from metal installation to subsequent catalytic reaction. As a result, these subtle structural changes in catalyst binding motifs led to distinct differences in catalytic activities, providing a compelling strategy for elucidating structure-activity relationships.

20.
Dalton Trans ; 50(8): 2880-2890, 2021 Feb 28.
Article in English | MEDLINE | ID: mdl-33544103

ABSTRACT

Metal-organic frameworks (MOFs) have attracted significant attention as sorbents due to their high surface area, tunable pore volume and pore size, coordinatively unsaturated metal sites, and ability to install desired functional groups by post-synthetic modification. Herein, we report three new MOFs with pillar-paddlewheel structures that have been synthesized solvothermally from the mixture of the carboxylate-pyrazole flexible linker (H2L), 4,4-bipyridine (BPY)/triethylenediamine (DABCO), and Zn(ii)/Cu(ii) ions. The MOFs obtained, namely [ZnII(L)BPY], [CuII(L)BPY], and [CuII(L)DABCO], exhibit two-fold interpenetration and dinuclear paddle-wheel nodes. The Zn(ii)/Cu(ii) cations are coordinated by two equatorial L linkers that result in two-dimensional sheets which in turn are pillared by BPY or DABCO in the perpendicular direction to obtain a neutral three-dimensional framework that shows one-dimensional square channels. The three pillar-layered MOFs were characterized as microporous materials showing high crystalline stability after activation at 120 °C and CO2 adsorption. All MOFs contain uncoordinated Lewis basic pyrazole nitrogen atoms in the framework which have an affinity toward CO2 and hence could potentially serve as CO2 adsorption material. The CO2 uptake capacity was initially enhanced by replacing Zn with Cu and then replacing the pillar, going from BPY to DABCO. Overall, all the MOFs exhibit low isosteric heat (Qst) of adsorption which signifies an advantage due to the energy required for the adsorption and regeneration processes.

SELECTION OF CITATIONS
SEARCH DETAIL
...