Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 15(10): 15538-15566, 2021 10 26.
Article in English | MEDLINE | ID: mdl-34609836

ABSTRACT

Chiral nanophotonic materials are promising candidates for biosensing applications because they focus light into nanometer dimensions, increasing their sensitivity to the molecular signatures of their surroundings. Recent advances in nanomaterial-enhanced chirality sensing provide detection limits as low as attomolar concentrations (10-18 M) for biomolecules and are relevant to the pharmaceutical industry, forensic drug testing, and medical applications that require high sensitivity. Here, we review the development of chiral nanomaterials and their application for detecting biomolecules, supramolecular structures, and other environmental stimuli. We discuss superchiral near-field generation in both dielectric and plasmonic metamaterials that are composed of chiral or achiral nanostructure arrays. These materials are also applicable for enhancing chiroptical signals from biomolecules. We review the plasmon-coupled circular dichroism mechanism observed for plasmonic nanoparticles and discuss how hotspot-enhanced plasmon-coupled circular dichroism applies to biosensing. We then review single-particle spectroscopic methods for achieving the ultimate goal of single-molecule chirality sensing. Finally, we discuss future outlooks of nanophotonic chiral systems.


Subject(s)
Nanoparticles , Nanostructures , Circular Dichroism , Nanotechnology
2.
J Chem Phys ; 152(3): 034706, 2020 Jan 21.
Article in English | MEDLINE | ID: mdl-31968975

ABSTRACT

For a nanostructure sitting on top of an AlGaN:Er3+ thin film, a new thermal imaging technique is presented where dual cameras collect bandpass filtered videos from the H and S bands of Er3+ emission. We combine this thermal imaging technique with our newly developed time-resolved temperature measurement technique which relies on luminescence thermometry using Er3+ emission. This technique collects time-resolved traces from the H and S bands of Er3+ emission. The H and S signal traces are then used to reconstruct the time-resolved temperature transient when a nanostructure is illuminated with a pulsed 532 nm light. Two different types of samples are interrogated with these techniques (drop-casted gold nanosphere cluster and lithographically prepared gold nanodot) on the AlGaN:Er3+ film. Steady-state and time-resolved temperature data are collected when the samples are immersed in air and water. The results of time-resolved temperature-jump measurements from a cluster of gold nanospheres show extremely slow heat transfer when the cluster is immersed in water and nearly 200-fold increase when immersed in air. The low thermal diffusivity for the cluster in water suggests poor thermal contact between the cluster and the thermal bath. The lithographically prepared nanodot has much better adhesion to the AlGaN film, resulting in much higher thermal diffusivity in both air and water. This proof-of-concept demonstration opens a new way to measure the dynamics of the local heat generation and dissipation at the nanoparticle-media interface.

3.
Beilstein J Nanotechnol ; 9: 2916-2924, 2018.
Article in English | MEDLINE | ID: mdl-30546988

ABSTRACT

Hexagonal upconverting nanoparticles (UCNPs) of NaYF4:Er3+,Yb3+ (ca. 300 nm) have been widely used to measure the temperature at the nanoscale using luminescence ratio thermometry. However, several factors limit their applications. For example, changes in the peak shape, mainly is the S-band emission, hinders their ability to be used as a universal temperature sensor. Herein, we introduce a universal calibration protocol for NaYF4:Er3+,Yb3+ upconverting nanoparticles that is robust to environmental changes and gives a precise temperature measurement. We used this new procedure to calculate the temperature profile inside a Taylor cone generated with an electrospray jet. Inside the Taylor cone the fluid velocity increases toward the tip of the cone. A constant acquisition length leads to a decrease in excitation and acquisition time. This decrease in excitation time causes a peak shape change that corrupts the temperature measurement if the entire peak shape is integrated in the calibration. Our universal calibration circumvents this problem and can be used for time-resolved applications. The temperature at the end of the Taylor cone increases due to the creation of a whispering gallery mode cavity with 980 nm excitation. We use time-resolved energy balance equations to support our optical temperature measurements inside the Taylor cone. We believe that the findings of this paper provide a foundation for time-resolved temperature measurements using NaYF4:Er3+,Yb3+ upconverting nanoparticles and can be used to understand temperature-dependent reactions such as protein unfolding inside microjet/microdroplets and microfluidic systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...