Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 945: 174126, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38909799

ABSTRACT

Differences in electrical properties of media are the basis for determining the type and extent of contamination using geophysical methods. However, differences in heavy metals and organic matter complicate the electrical properties of compound-contaminated media, and existing geophysical methods cannot independently identify compound contamination. Therefore, this study proposes a geophysical detection system that combines electrical resistance tomography (ERT) and induced polarization methods and establishes a solid theory as the basis for the system application through laboratory experiments, model analysis, and site applications. The study reveals that as the organics volume proportion increases, the resistivity and normalized chargeability of contaminated media increased slowly, followed by a rapid increase, and finally reached a stable state. The specific type of compound significantly influences the electrical properties, while the resistivity of different kinds of compound-contaminated media reaches the same maximum value as the organics volume proportion increases. The medium type determines the contaminated media's lower resistivity limit and upper normalized chargeability limit. Additionally, the interplay between heavy metal type, content, and medium complicates the electrical properties of the media, with the compound type exerting a significant impact on resistivity. Archie's law and random forest modeling reveal that the inflection point for resistivity change occurs at 40 % and 80 % organics volume proportions, while the inflection point for normalized chargeability change occurs at 30 % and 70 % organics volume proportions in compound-contaminated media. These inflection points depend on the types of compounds, compositions, proportions, and media, and their importance for the electrical properties of the media changes with the increasing organics volume proportion. Based on the changing patterns of resistivity and normalized chargeability in heavy metal-organic compound contaminated media, the modified geophysical detection system can effectively identify the pollution type and intensity, which provides accurate pollution information to develop effective treatment strategies.

2.
J Environ Manage ; 352: 120022, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38198836

ABSTRACT

Organic contaminated sites have gained significant attention as a prominent contributor to shallow groundwater contamination. However, limited knowledge exists regarding the impact of hydrodynamic effects on microbially mediated contaminant degradation at such sites. In this study, we investigated the distribution characteristics and community structure of prokaryotic microorganisms at the selected site during both wet and dry seasons, with a particular focus on their environmental adaptations. The results revealed significant seasonal variations (P < 0.05) in the α-diversity of prokaryotes within groundwater. The dry season showed more exclusive OTUs than the wet season. The response of prokaryotic metabolism to organic pollution pressure in different seasons was explored by PICRUSt2, and enzymes associated with the degradation of organic pollutants were identified based on the predicted functions. The results showed that hormesis was considered as an adaptive response of microbial communities under pollution stress. In addition, structural equation models demonstrated that groundwater level fluctuations can, directly and indirectly, affect the abundance and diversity of prokaryotes through other factors such as oxidation reduction potential (ORP), dissolved oxygen (DO), and naphthalene (Nap). Overall, our findings imply that the taxonomic composition and functional properties of prokaryotes in groundwater in organic contaminated sites is influenced by the interaction between seasonal variations and characteristics of organic pollution. The results provide new insights into microbiological processes in groundwater systems in organic contaminated sites.


Subject(s)
Groundwater , Microbiota , Groundwater/chemistry , Environmental Pollution/analysis
3.
J Hazard Mater ; 460: 132255, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37703736

ABSTRACT

Under the background of the Coronavirus Disease 2019 (COVID-19) pandemic, research on pathogens deserves greater attention in the natural environment, especially in the widely distributed contaminated sites with complicated and severe organic pollution. In this study, the community composition and assembly of soil pathogens identified by the newly-developed 16S-based pipeline of multiple bacterial pathogen detection (MBPD) have been investigated on spatiotemporal scales in the selected organic polluted site. We demonstrated that the richness and diversity of the pathogenic communities were primarily controlled by soil depth, while the structure and composition of pathogenic communities varied pronouncedly with seasonal changes, which were driven by the alterations in both physiochemical parameters and organic contaminants over time. Network analysis revealed that the overwhelmingly positive interactions, identified multiple keystone species, and a well-organized modular structure maintained the stability and functionality of the pathogenic communities under environmental pressures. Additionally, the null-model analysis showed that deterministic processes dominated the pathogenic community assembly across soil profiles. In three seasons, stochasticity-dominated processes in spring and summer changed into determinism-dominated processes in winter. These findings extend our knowledge of the response of the bacterial pathogenic community to environmental disruptions brought on by organic contaminated sites.


Subject(s)
COVID-19 , Humans , Aged , Seasons , Environment , Environmental Pollution , Soil
4.
Environ Res ; 231(Pt 2): 116195, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37207735

ABSTRACT

Extreme environmental disturbances induced by organic contaminated sites impose serious impacts on soil microbiomes. However, our understanding of the responses of the core microbiota and its ecological roles in organic contaminated sites is limited. In this study, we took a typical organic contaminated site as an example and investigated the composition and structure, assembly mechanisms of core taxa and their roles in key ecological functions across soil profiles. Results presented that core microbiota with a considerably lower number of species (7.93%) than occasional taxa presented comparatively high relative abundances (38.04%) yet, which was mainly comprised of phyla Proteobacteria (49.21%), Actinobacteria (12.36%), Chloroflexi (10.63%), and Firmicutes (8.21%). Furthermore, core microbiota was more influenced by geographical differentiation than environmental filtering, which possessed broader niche widths and stronger phylogenetic signals for ecological preferences than occasional taxa. Null modelling suggested that stochastic processes dominated the assembly of the core taxa and maintained a stable proportion along soil depths. Core microbiota had a greater impact on microbial community stability and possessed higher functional redundancy than occasional taxa. Additionally, the structural equation model illustrated that core taxa played pivotal roles in degrading organic contaminants and maintaining key biogeochemical cycles potentially. Overall, this study deepens our knowledge of the ecology of core microbiota under complicated environmental conditions in organic contaminated sites, and provides a fundamental basis for preserving and potentially utilizing core microbiota to maintain soil health.


Subject(s)
Microbiota , Soil , Soil/chemistry , Soil Microbiology , Phylogeny , Bacteria/genetics
5.
Sci Total Environ ; 853: 158625, 2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36089032

ABSTRACT

Soil microbiota as the key role mediates the natural attenuation process of organic contaminated sites, and therefore illuminating the mechanisms underlying the responses of abundant and rare species is essential for understanding ecological processes, maintaining ecosystem stability, and regulating natural attenuation well. Here, we explored the distributional characteristics, ecological diversities, and co-occurrence patterns of abundant and rare prokaryotic subcommunities using 16S rRNA high-throughput sequencing in vertical soil profiles of a controlled organic contaminated site. Results showed that abundant prokaryotic taxa were widespread across all soil samples, whereas rare counterparts were unbalancedly distributed. Rare subcommunity had more taxonomic groups and higher α- and ß-diversities than abundant subcommunity. Both of these two subcommunities surviving in the organic polluted site possessed the potential of degrading organic contaminants. Abundant subcommunity was little affected by abiotic factors and mainly shaped by soil depth, while rare one was sensitive to environmental disturbances and presented a non-depth-dependent structure. Co-occurrence analysis revealed that rare taxa were more situated at the center of the network and more inclined to cooperate with non-abundant species than abundant taxa, which might play crucial roles in enhancing the resilience and resistance of prokaryotic community and maintaining its structure and stability. Overall, our results suggest that abundant and rare prokaryotic subcommunities present different responses to physicochemical factors and pollution characteristics along vertical soil profiles of organic contaminated sites undergoing natural attenuation.


Subject(s)
Microbiota , RNA, Ribosomal, 16S , Soil Microbiology , Soil , High-Throughput Nucleotide Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL
...