Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 121
Filter
Add more filters










Publication year range
1.
World J Gastrointest Oncol ; 16(6): 2429-2438, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38994158

ABSTRACT

BACKGROUND: In recent years, the incidence of colorectal cancer (CRC) has been increasing. With the popularization of endoscopic technology, a number of early CRC has been diagnosed. However, despite current treatment methods, some patients with early CRC still experience postoperative recurrence and metastasis. AIM: To search for indicators associated with early CRC recurrence and metastasis to identify high-risk populations. METHODS: A total of 513 patients with pT2N0M0 or pT3N0M0 CRC were retrospectively enrolled in this study. Results of blood routine test, liver and kidney function tests and tumor markers were collected before surgery. Patients were followed up through disease-specific database and telephone interviews. Tumor recurrence, metastasis or death were used as the end point of study to find the risk factors and predictive value related to early CRC recurrence and metastasis. RESULTS: We comprehensively compared the predictive value of preoperative blood routine, blood biochemistry and tumor markers for disease-free survival (DFS) and overall survival (OS) of CRC. Cox multivariate analysis demonstrated that low platelet count was significantly associated with poor DFS [hazard ratio (HR) = 0.995, 95% confidence interval (CI): 0.991-0.999, P = 0.015], while serum carcinoembryonic antigen (CEA) level (HR = 1.008, 95%CI: 1.001-1.016, P = 0.027) and serum total cholesterol level (HR = 1.538, 95%CI: 1.026-2.305, P = 0.037) were independent risk factors for OS. The cutoff value of serum CEA level for predicting OS was 2.74 ng/mL. Although the OS of CRC patients with serum CEA higher than the cutoff value was worse than those with lower CEA level, the difference between the two groups was not statistically significant (P = 0.075). CONCLUSION: For patients with T2N0M0 or T3N0M0 CRC, preoperative platelet count was a protective factor for DFS, while serum CEA level was an independent risk factor for OS. Given that these measures are easier to detect and more acceptable to patients, they may have broader applications.

2.
J Med Chem ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38968440

ABSTRACT

Herein, a series of novel arylpiperazine (piperidine) derivatives were designed, synthesized, and evaluated for mechanisms of action through in vitro and in vivo studies. The most promising compound, II-13 (later named as MT-1207), is a potent α1 and 5-HT2A receptor antagonist with remarkable IC50 in the picomolar level. Importantly, in the in vivo assay, II-13 achieved an effective blood pressure (BP) reduction in the 2K2C rat model without damaging renal function. Compound II-13, with its significant advantages in terms of pharmacological effects, pharmacokinetic parameters, and a large safety window, was extensively investigated. Moreover, data also showed that compound II-13 had fewer side effects in a postural BP assay and could prevent the onset of postural hypotension. Together, these results suggested that compound II-13 is a highly potent antihypertensive drug candidate with multitarget mechanisms of action in preclinical models. Currently, MT-1207 is in phase II hypertensive clinical trials in China.

3.
Front Pharmacol ; 15: 1366417, 2024.
Article in English | MEDLINE | ID: mdl-38855754

ABSTRACT

The in-vivo non-human primate animal and in-vitro cell disease models play a crucial part in the study of the mechanisms underlying the occurrence and development of pancreatic diseases, but with increasingly prominent limitations with in-depth research. Organoids derived from human pluripotent and adult stem cells resemble human in-vivo organs in their cellular composition, spatial tissue structure and physiological function, making them as an advantageous research tool. Up until now, numerous human organoids, including pancreas, have been effectively developed, demonstrating significant potential for research in organ development, disease modeling, drug screening, and regenerative medicine. However, different from intestine, liver and other organs, the pancreas is the only special organ in the human body, consisting of an exocrine gland and an endocrine gland. Thus, the development of pancreatic organoid technology faces greater challenges, and how to construct a composite pancreatic organoid with exocrine and endocrine gland is still difficult in current research. By reviewing the fundamental architecture and physiological role of the human pancreas, along with the swiftly developing domain of pancreatic organoids, we summarize the method and characteristics of human pancreatic organoids, and its application in modeling pancreatic diseases, as a platform for individualized drug screening and in regenerative medicine study. As the first comprehensive review that focus on the pharmacological study of human pancreatic organoid, the review hopes to help scholars to have a deeper understanding in the study of pancreatic organoid.

4.
Diabetes Metab Syndr Obes ; 17: 959-967, 2024.
Article in English | MEDLINE | ID: mdl-38435635

ABSTRACT

Objective: Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease. Metrnl is a secreted protein that plays an important role in kidney disease. The aim of this study was to investigate DKD-related factors and the correlation between serum Metrnl levels and the severity of DKD. Methods: Ninety-six type 2 diabetes mellitus (T2DM) patients and 45 DKD patients were included in the study. A range of parameters were measured simultaneously, including waist-to-hip ratio (WHR), body mass index (BMI), urinary albumin/creatinine ratio (UACR), monocyte-lymphocyte ratio (MLR), albumin/globulin (A/G), liver and kidney function, blood lipid profile, islet function, and others. Subsequently, the related factors and predictive significance of DKD were identified. The correlation between the relevant factors of DKD and serum Metrnl levels with DKD was evaluated. Results: The duration of the disease (OR: 1.12, 95% CI: 1.01-1.24, P=0.031), hypertension (OR: 4.86, 95% CI: 1.16-20.49, P=0.031), fasting blood glucose (OR: 1.23, 95% CI: 1.03-1.48, P=0.025), WHR (OR: 2.53, 95% CI: 1.03-6.22, P=0.044), and MLR (OR: 1.91, 95% CI: 1.18-3.08, P=0.008) are independent risk factors for DKD (P < 0.05). Conversely, A/G (OR: 0.13, 95% CI: 0.02-0.76, P=0.024) and Metrnl (OR: 0.99, 95% CI: 0.98-1.00, P=0.001) have been identified as protective factors against DKD. Furthermore, the level of Metrnl was negatively correlated with the severity of DKD (rs=-0.447, P<0.001). The area under receiver operating characteristic (ROC) curves for the diagnostic accuracy of Metrnl for DKD is 0.765 (95% CI: 0.686-0.844). Conclusion: The duration of the disease, hypertension, fasting blood glucose, WHR, and MLR are major risk factors for DKD. Metrnl and A/G are protective factors for DKD. Serum Metrnl concentrations are inversely correlated with DKD severity.

5.
Acta Pharmacol Sin ; 45(5): 914-925, 2024 May.
Article in English | MEDLINE | ID: mdl-38253637

ABSTRACT

Metrnl is a secreted protein involved in neurite outgrowth, insulin sensitivity, immunoinflammatory responses, blood lipids and endothelial protection. In this study, we investigated the role of Metrnl in ischemic stroke. Fifty-eight ischemic stroke patients (28 inpatient patients within 2 weeks of onset and 30 emergency patients within 24 h of onset) and 20 healthy controls were enrolled. Serum Metrnl was measured by enzyme-linked immunosorbent assay. We showed that serum Metrnl levels were significantly reduced in both inpatient and emergency patient groups compared with the controls. Different pathological causes for ischemic stroke such as large artery atherosclerosis and small artery occlusion exhibited similar reduced serum Metrnl levels. Transient ischemic attack caused by large artery atherosclerosis without brain infarction also had lower serum Metrnl levels. Metrnl was correlated with some metabolic, inflammatory and clotting parameters. Reduced serum Metrnl was associated with the severity of intracranial arterial stenosis and the presence of ischemic stroke. In order to elucidate the mechanisms underlying the reduced serum Metrnl levels, we established animal models of ischemic stroke in normal mice, atherosclerotic apolipoprotein E-knockout mice and Metrnl-knockout mice by middle cerebral artery occlusion (MCAO) using intraluminal filament or electrocoagulation. We demonstrated that serum Metrnl levels were significantly lower in atherosclerosis mice than normal mice, whereas acute ischemic stroke injury in normal mice and atherosclerosis mice did not alter serum Metrnl levels. Metrnl knockout did not affect acute ischemic stroke injury and death. We conclude that reduced serum Metrnl levels are attributed to the chronic vascular pathogenesis before the onset of ischemic stroke. Metrnl is a potential target for prevention of ischemic stroke.


Subject(s)
Adipokines , Ischemic Stroke , Humans , Animals , Male , Ischemic Stroke/blood , Ischemic Stroke/genetics , Female , Middle Aged , Aged , Mice, Inbred C57BL , Mice , Infarction, Middle Cerebral Artery/blood , Mice, Knockout, ApoE
6.
Stroke Vasc Neurol ; 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38286483

ABSTRACT

The use of biologics in various diseases has dramatically increased in recent years. Stroke, a cerebrovascular disease, is the second most common cause of death, and the leading cause of disability with high morbidity worldwide. For biologics applied in the treatment of acute ischaemic stroke, alteplase is the only thrombolytic agent. Meanwhile, current clinical trials show that two recombinant proteins, tenecteplase and non-immunogenic staphylokinase, are most promising as new thrombolytic agents for acute ischaemic stroke therapy. In addition, stem cell-based therapy, which uses stem cells or organoids for stroke treatment, has shown promising results in preclinical and early clinical studies. These strategies for acute ischaemic stroke mainly rely on the unique properties of undifferentiated cells to facilitate tissue repair and regeneration. However, there is a still considerable journey ahead before these approaches become routine clinical use. This includes optimising cell delivery methods, determining the ideal cell type and dosage, and addressing long-term safety concerns. This review introduces the current or promising recombinant proteins for thrombolysis therapy in ischaemic stroke and highlights the promise and challenges of stem cells and cerebral organoids in stroke therapy.

7.
Acta Pharmacol Sin ; 44(9): 1790-1800, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37142683

ABSTRACT

Meteorin-like (Metrnl) is a novel secreted protein with various biological activities. In this study, we investigated whether and how Metrnl regulated skin wound healing in mice. Global Metrnl gene knockout mice (Metrnl-/-) and endothelial cell-specific Metrnl gene knockout mice (EC-Metrnl-/-) were generated. Eight-mm-diameter full-thickness excisional wound was made on the dorsum of each mouse. The skin wounds were photographed and analyzed. In C57BL/6 mice, we observed that Metrnl expression levels were markedly increased in skin wound tissues. We found that both global and endothelial cell-specific Metrnl gene knockout significantly retarded mouse skin wound healing, and endothelial Metrnl was the key factor affecting wound healing and angiogenesis. The proliferation, migration and tube formation ability of primary human umbilical vein endothelial cells (HUVECs) were inhibited by Metrnl knockdown, but significantly promoted by addition of recombinant Metrnl (10 ng/mL). Metrnl knockdown abolished the proliferation of endothelial cells stimulated by recombinant VEGFA (10 ng/mL) but not by recombinant bFGF (10 ng/mL). We further revealed that Metrnl deficiency impaired VEGFA downstream AKT/eNOS activation in vitro and in vivo. The damaged angiogenetic activity in Metrnl knockdown HUVECs was partly rescued by addition of AKT activator SC79 (10 µM). In conclusion, Metrnl deficiency retards skin wound healing in mice, which is related to impaired endothelial Metrnl-mediated angiogenesis. Metrnl deficiency impairs angiogenesis by inhibiting AKT/eNOS signaling pathway.


Subject(s)
Neovascularization, Physiologic , Proto-Oncogene Proteins c-akt , Animals , Humans , Mice , Cell Movement , Cell Proliferation , Human Umbilical Vein Endothelial Cells/metabolism , Mice, Inbred C57BL , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Wound Healing
8.
Acta Pharm Sin B ; 13(4): 1568-1587, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37139425

ABSTRACT

METRNL is a recently identified secreted protein with emerging functions. This study is to find major cellular source of circulating METRNL and to determine METRNL novel function. Here, we show METRNL is abundant in human and mouse vascular endothelium and released by endothelial cells using endoplasmic reticulum-Golgi apparatus pathway. By creating endothelial cell-specific Metrnl knockout mice, combined with bone marrow transplantation to produce bone marrow-specific deletion of Metrnl, we demonstrate that most of circulating METRNL (approximately 75%) originates from the endothelial cells. Both endothelial and circulating METRNL decrease in atherosclerosis mice and patients. By generating endothelial cell-specific Metrnl knockout in apolipoprotein E-deficient mice, combined with bone marrow-specific deletion of Metrnl in apolipoprotein E-deficient mice, we further demonstrate that endothelial METRNL deficiency accelerates atherosclerosis. Mechanically, endothelial METRNL deficiency causes vascular endothelial dysfunction including vasodilation impairment via reducing eNOS phosphorylation at Ser1177 and inflammation activation via enhancing NFκB pathway, which promotes the susceptibility of atherosclerosis. Exogenous METRNL rescues METRNL deficiency induced endothelial dysfunction. These findings reveal that METRNL is a new endothelial substance not only determining the circulating METRNL level but also regulating endothelial function for vascular health and disease. METRNL is a therapeutic target against endothelial dysfunction and atherosclerosis.

9.
Neural Regen Res ; 18(10): 2119-2126, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37056118

ABSTRACT

As three-dimensional "organ-like" aggregates, human cortical organoids have emerged as powerful models for studying human brain evolution and brain disorders with unique advantages of human-specificity, fidelity and manipulation. Human cortical organoids derived from human pluripotent stem cells can elaborately replicate many of the key properties of human cortical development at the molecular, cellular, structural, and functional levels, including the anatomy, functional neural network, and interaction among different brain regions, thus facilitating the discovery of brain development and evolution. In addition to studying the neuro-electrophysiological features of brain cortex development, human cortical organoids have been widely used to mimic the pathophysiological features of cortical-related disease, especially in mimicking malformations of cortical development, thus revealing pathological mechanism and identifying effective drugs. In this review, we provide an overview of the generation of human cortical organoids and the properties of recapitulated cortical development and further outline their applications in modeling malformations of cortical development including pathological phenotype, underlying mechanisms and rescue strategies.

10.
Acta Pharm Sin B ; 13(3): 1028-1035, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36970208

ABSTRACT

Mitochondrial diseases are a group of inherited or acquired metabolic disorders caused by mitochondrial dysfunction which may affect almost all the organs in the body and present at any age. However, no satisfactory therapeutic strategies have been available for mitochondrial diseases so far. Mitochondrial transplantation is a burgeoning approach for treatment of mitochondrial diseases by recovery of dysfunctional mitochondria in defective cells using isolated functional mitochondria. Many models of mitochondrial transplantation in cells, animals, and patients have proved effective via various routes of mitochondrial delivery. This review presents different techniques used in mitochondrial isolation and delivery, mechanisms of mitochondrial internalization and consequences of mitochondrial transplantation, along with challenges for clinical application. Despite some unknowns and challenges, mitochondrial transplantation would provide an innovative approach for mitochondrial medicine.

11.
Cells ; 12(4)2023 02 10.
Article in English | MEDLINE | ID: mdl-36831235

ABSTRACT

Nicotinamide phosphoribosyltransferase (Nampt) is the rate-limiting enzyme in the salvage pathway of nicotinamide adenine dinucleotide (NAD) biosynthesis. Thus far, hepatic Nampt has not been extensively explored in terms of its effects on serum lipid stability and liver lipids metabolism. In this study, hepatocyte-specific Nampt knockout (HC-Nampt-/-) mice were generated by Cre/loxP system. Nampt mRNA expression was reduced in the liver, but not in other tissues, in HC-Nampt-/- mice compared with wild-type (WT) mice. Hepatic Nampt deficiency had no effect on body weight and fasting blood glucose, and it did not induce atherosclerosis in mice under both normal chow diet (NCD) and high fat diet (HFD). At baseline state under NCD, hepatic Nampt deficiency also did not affect liver weight, liver function index, including alanine aminotransferase, aspartate aminotransferase, albumin and alkaline phosphatase, and serum levels of lipids, including triglycerides (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and non-esterified fatty acids (NEFA). However, under HFD, deficiency of hepatic Nampt resulted in increased liver weight, liver function index, and serum levels of TG, TC, HDL-C, and NEFA. Meanwhile, histopathological examination showed increased fat accumulation and fibrosis in the liver of HC-Nampt-/- mice compared with WT mice. Taken together, our results show that hepatic Nampt deficiency aggravates dyslipidemia and liver damage in HFD fed mice. Hepatocyte Nampt can be a protective target against dyslipidemia and fatty liver.


Subject(s)
Dyslipidemias , Fatty Liver , Noncommunicable Diseases , Mice , Animals , Diet, High-Fat , Nicotinamide Phosphoribosyltransferase/metabolism , Fatty Acids, Nonesterified , Fatty Liver/metabolism , Triglycerides/metabolism , Cholesterol, HDL
12.
Acta Pharmacol Sin ; 44(7): 1305-1321, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36829053

ABSTRACT

Owing to its high disability and mortality rates, stroke has been the second leading cause of death worldwide. Since the pathological mechanisms of stroke are not fully understood, there are few clinical treatment strategies available with an exception of tissue plasminogen activator (tPA), the only FDA-approved drug for the treatment of ischemic stroke. Angiogenesis is an important protective mechanism that promotes neural regeneration and functional recovery during the pathophysiological process of stroke. Thus, inducing angiogenesis in the peri-infarct area could effectively improve hemodynamics, and promote vascular remodeling and recovery of neurovascular function after ischemic stroke. In this review, we summarize the cellular and molecular mechanisms affecting angiogenesis after cerebral ischemia registered in PubMed, and provide pro-angiogenic strategies for exploring the treatment of ischemic stroke, including endothelial progenitor cells, mesenchymal stem cells, growth factors, cytokines, non-coding RNAs, etc.


Subject(s)
Brain Ischemia , Ischemic Stroke , Stroke , Humans , Tissue Plasminogen Activator/therapeutic use , Ischemic Stroke/drug therapy , Brain Ischemia/metabolism , Nerve Regeneration
13.
Curr Pharm Biotechnol ; 24(2): 299-309, 2023.
Article in English | MEDLINE | ID: mdl-35593333

ABSTRACT

OBJECTIVE: This study determined for the first time the distribution of intravenous nicotinamide mononucleotide (NMN) and its metabolite nicotinamide adenine dinucleotide (NAD) in normal and ischemic stroke mice, examined the therapeutic effect of NMN on ischemic brain infarction, and evaluated acute toxicity of NMN after intravenous injection of NMN. METHODS: NMN and NAD levels were determined using ultra-high-performance liquid chromatography tandem mass spectrometry in biological samples from mice with or without middle cerebral artery occlusion (MCAO) at different time points post intravenous NMN injection (300 mg/kg). Brain infarction was evaluated 24 h post-MCAO. 2 g/kg NMN was used in the acute toxicity test. RESULTS: Under either normal or MCAO conditions, serum NMN levels sharply increased after intravenous NMN administration and then decreased rapidly within 15 min, while serum NAD levels remained unchanged during 30 min observation. Both substances displayed tissue accumulation over time and stored faster under MCAO conditions, with kidney having the highest concentrations. Particularly, NMN accumulated earlier than NAD in the brain. Moreover, NMN reduced cerebral infarction at 24 h post-MCAO. No acute toxicity was observed for 14 days. NRK1 and SLC12A8 involved in two pathways of NMN uptake exhibited the highest expressions in kidney and colon, respectively, among 11 different tissues. CONCLUSION: NMN distributes to various tissues after intravenous injection and has the ability to enter the brain to boost NAD levels, and exhibits safety and therapeutic effect on acute ischemic stroke injury. High renal distribution of NMN indicates its importance in the kidney.


Subject(s)
Ischemic Stroke , Nicotinamide Mononucleotide , Mice , Animals , Nicotinamide Mononucleotide/metabolism , NAD/metabolism , Injections, Intravenous
14.
Acta Pharmacol Sin ; 44(4): 741-751, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36229598

ABSTRACT

Aging is one of the main risk factors for cognitive dysfunction. During aging process, the decrease of brain-derived neurotrophic factor (BDNF) and the impairment of astrocyte function contribute to the cognitive impairment. Metrnl, a neurotrophic factor, promotes neural growth, migration and survival, and supports neural function. In this study, we investigated the role of Metrnl in cognitive functions. D-galactose (D-gal)-induced aging model was used to simulate the process of aging. Cognitive impairment was assessed by the Morris water maze test. We showed that Metrnl expression levels were significantly increased in the hippocampus of D-gal-induced aging mice. Metrnl knockout did not affect the cognitive functions in the baseline state, but aggravated the cognitive impairment in the D-gal-induced aging mice. Furthermore, Metrnl knockout significantly reduced hippocampal BDNF, TrkB, and glial fibrillary acidic protein (GFAP) levels in the D-gal-induced aging mice. In the D-gal-induced aging cell model in vitro, Metrnl levels in the hippocampal astrocytes were significantly increased, and Metrnl knockdown and overexpression regulated the BDNF levels in primary hippocampal astrocytes rather than in neurons. We conclude that Metrnl regulates cognitive functions and hippocampal BDNF levels during aging process. As a neurotrophic factor and an endogenous protein, Metrnl is expected to become a new candidate for the treatment or alleviation of aging-related cognitive dysfunction.


Subject(s)
Brain-Derived Neurotrophic Factor , Cognitive Dysfunction , Animals , Mice , Aging/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Cognitive Dysfunction/metabolism , Galactose , Hippocampus/metabolism
15.
Acta Pharmacol Sin ; 44(3): 513-523, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36100766

ABSTRACT

Establishing a stoke experimental model, which is better in line with the physiology and function of human brain, is the bottleneck for the development of effective anti-stroke drugs. A three-dimensional cerebral organoids (COs) from human pluripotent stem cells can mimic cell composition, cortical structure, brain neural connectivity and epigenetic genomics of in-vivo human brain, which provides a promising application in establishing humanized ischemic stroke model. COs have been used for modeling low oxygen condition-induced hypoxic injury, but there is no report on the changes of COs in response to in vitro oxygen-glucose deprivation (OGD)-induced damage of ischemic stroke as well as its application in testing anti-stroke drugs. In this study we compared the cell composition of COs at different culture time and explored the cell types, cell ratios and volume size of COs at 85 days (85 d-CO). The 85 d-CO with diameter more than 2 mm was chosen for establishing humanized ischemic stroke model of OGD. By determining the time-injury relationship of the model, we observed aggravated ischemic injury of COs with OGD exposure time, obtaining first-hand evidence for the damage degree of COs under different OGD condition. The sensitivity of the model to ischemic injury and related treatment was validated by the proven pan-Caspase inhibitor Z-VAD-FMK (20 µM) and Bcl-2 inhibitor navitoclax (0.5 µM). Neuroprotective agents edaravone, butylphthalide, P7C3-A20 and ZL006 (10 µM for each) exerted similar beneficial effects in this model. Taken together, this study establishes a humanized ischemic stroke model based on COs, and provides evidence as a new research platform for anti-stroke drug development.


Subject(s)
Ischemic Stroke , Neuroprotective Agents , Organoids , Humans , Apoptosis , Brain/metabolism , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , Brain Ischemia/pathology , Glucose/metabolism , Ischemic Stroke/drug therapy , Ischemic Stroke/metabolism , Ischemic Stroke/pathology , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Organoids/drug effects , Organoids/metabolism , Organoids/pathology , Oxygen/metabolism , Stroke/drug therapy , Stroke/metabolism , Stroke/pathology
16.
Acta Pharmacol Sin ; 42(6): 871-884, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34002042

ABSTRACT

Stroke is a common cause of death and disability. Allisartan isoproxil (ALL) is a new angiotensin II receptor blocker and a new antihypertensive drug discovered and developed in China. In the present study we investigated the therapeutic effects of ALL in stroke-prone renovascular hypertensive rats (RHR-SP) and the underlying mechanisms. The model rats were generated via two-kidney two-clip (2K2C) surgery, which led to 100% of hypertension, 100% of cerebrovascular damage as well as 100% of mortality 1 year after the surgery. Administration of ALL (30 mg · kg-1 · d-1 in diet, for 55 weeks) significantly decreased stroke-related death and prolonged lifespan in RHR-SP, but the survival ALL-treated RHR-SP remained of hypertension and cardiovascular hypertrophy compared with sham-operated normal controls. In addition to cardiac, and aortic protection, ALL treatment for 10 or 12 weeks significantly reduced cerebrovascular damage incidence and scoring, along with a steady reduction of blood pressure (BP) in RHR-SP. Meanwhile, it significantly decreased serum aldosterone and malondialdehyde levels and cerebral NAD(P)H oxidase expressions in RHR-SP. We conducted 24 h continuous BP recording in conscious freely moving RHR-SP, and found that a single intragastric administration of ALL produced a long hypotensive effect lasting for at least 12 h on systolic BP. Taken together, our results in RHR-SP demonstrate that ALL can be used for stroke prevention via BP reduction and organ protection, with the molecular mechanisms related to inhibition of angiotensin-aldosterone system and oxidative stress. This study also provides a valuable scoring for evaluation of cerebrovascular damage and drug efficacy.


Subject(s)
Angiotensin II Type 1 Receptor Blockers/therapeutic use , Antihypertensive Agents/therapeutic use , Aortic Diseases/prevention & control , Biphenyl Compounds/therapeutic use , Cerebrovascular Disorders/prevention & control , Imidazoles/therapeutic use , Stroke/prevention & control , Aldosterone/metabolism , Animals , Aorta/drug effects , Aortic Diseases/complications , Aortic Diseases/mortality , Blood Pressure/drug effects , Brain/drug effects , Brain/pathology , Cerebrovascular Disorders/complications , Cerebrovascular Disorders/mortality , Cerebrovascular Disorders/pathology , Heart/drug effects , Hypertension/complications , Hypertension/mortality , Kaplan-Meier Estimate , Kidney/drug effects , Kidney/pathology , Kidney/surgery , Myocardium/pathology , Oxidative Stress/drug effects , Rats, Sprague-Dawley , Stroke/complications , Stroke/mortality
17.
Ann Transl Med ; 9(6): 509, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33850906

ABSTRACT

The α7 nicotinic acetylcholine receptor (α7nAChR) has been studied for many years since its discovery. Although many functions and characteristics of brain α7nAChR are widely understood, much remains to be elucidated. The α7nAChR is widely expressed in the central nervous system, not only in neurons but also in astrocytes, microglia, and endothelial cells. α7nAChR can be activated by endogenous agonist like acetylcholine or exogenous agonists like nicotine and PNU282987. Its agonists can be divided into selective agonists and non-selective agonists. The activation of α7nAChR results in a series of physiological processes which have both short-term and long-term effects on cells, for example, calcium influx, neurotransmitter release, synaptic plasticity, and excitatory transmission. It also induces other downstream events, such as inflammation, autophagy, necrosis, transcription, and apoptosis. The cellular responses to α7nAChR activation vary according to cell types and conditions. For example, α7nAChR activation in pyramidal neurons leads to long-term potentiation, while α7nAChR activation in GABAergic interneurons leads to long-term depression. Studies have also shown some contradictory phenomena, which requires further study for clarification. Herein, the cellular responses of α7nAChR activation are summarized, and the functions of α7nAChR in neurons and non-neuronal cells are discussed. We also summarized contradictory conclusions to show where we stand and where to go for future studies.

18.
Acta Pharmacol Sin ; 42(6): 885-897, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33782540

ABSTRACT

Hypertension is a serious public health problem worldwide. MT-1207, chemically named 3-(4-(4-(1H-benzotriazole-1-yl)butyl)piperazine-1-yl) benzisothiazole hydrochloride, is a new chemical entity that has entered into clinical trial as antihypertensive agent in China. In this paper we report the pharmacological profile of MT-1207 regarding its acute, subacute, and long-term effects on hypertensive animal models, and its actions on isolated organs in vitro as well as its molecular targets. Blood pressure (BP) was measured in conscious animals; amlodipine was taken as a positive control drug. We showed that both single dose of MT-1207 (1.25-20 mg/kg, ig) in spontaneously hypertensive rats (SHR) and MT-1207 (0.25-6 mg/kg, ig) in two-kidney one-clip (2K1C) dogs dose-dependently decreased BP. MT-1207 quickly decreased BP within 5 min after administration; the hypotensive effect lasted for 8 and 12 h, respectively, in SHR and 2K1C dogs without reflex increase in heart rate. Multiple doses of MT-1207 (5 mg · kg-1 · d-1 in SHR; 2 mg · kg-1 · d-1 in 2K1C dogs, for 7 days) significantly decreased BP, slightly reduced heart rate, and both of them recovered after withdrawal. Long-term administration of MT-1207 (10 mg · kg-1 · d-1 for 4 months or more time) produced a stable BP reduction, improved baroreflex sensitivity, reduced renal and cardiovascular damage in SHR, and delayed stroke occurrence and death in stroke-prone SHR. In isolated rat aortic rings precontracted by adrenaline, KCl, noradrenaline or 5-hydroxytryptamine (5-HT), MT-1207 (10-9-10-4 M) caused concentration-dependent relaxation. In a panel of enzyme activity or radioligand binding assays of 87 molecular targets, MT-1207 potently inhibited adrenergic α1A, α1B, α1D, and 5-HT2A receptors with Ki < 1 nM. The antagonism of MT-1207 against these receptors was confirmed in isolated rabbit arteries. We conclude that MT-1207 is a novel and promising single-molecule multitarget agent for hypertension treatment to reduce hypertensive organ damage and stroke mortality.


Subject(s)
Antihypertensive Agents/therapeutic use , Hypertension/drug therapy , Stroke/prevention & control , Thiazoles/therapeutic use , Triazoles/therapeutic use , Animals , Antihypertensive Agents/metabolism , Baroreflex/drug effects , Blood Pressure/drug effects , Dogs , Electrocardiography/drug effects , Female , Guinea Pigs , Heart Rate/drug effects , Hypertension/mortality , Male , Molecular Docking Simulation , Rabbits , Rats, Inbred SHR , Receptor, Serotonin, 5-HT2A/metabolism , Receptors, Adrenergic, alpha/metabolism , Stroke/mortality , Thiazoles/metabolism , Triazoles/metabolism , Vasodilation/drug effects , Vasodilator Agents/metabolism , Vasodilator Agents/therapeutic use
19.
Clin Exp Pharmacol Physiol ; 48(2): 238-249, 2021 02.
Article in English | MEDLINE | ID: mdl-33051888

ABSTRACT

Glucose homeostasis is tightly controlled by balance between glucose production and uptake in liver tissue upon energy shortage condition. Altered glucose homeostasis contributes to the pathophysiology of metabolic disorders including diabetes and obesity. Here, we aimed to analyse the change of proteomic profile upon prolonged fasting in mice with isobaric tag for relative and absolute quantification (iTRAQ) labelling followed by liquid chromatography-mass spectrometry (LC/MS) technology. Adult male mice were fed or fasted for 16 hours and liver tissues were collected for iTRAQ labelling followed by LC/MS analysis. A total of 322 differentially expressed proteins were identified, including 189 upregulated and 133 downregulated proteins. Bioinformatics analyses, including Gene Ontology analysis (GO), Kyoto encyclopaedia of genes and genomes analysis (KEGG) and protein-protein interaction analysis (PPI) were conducted to understand biological process, cell component, and molecular function of the 322 differentially expressed proteins. Among 322 hepatic proteins differentially expressed between fasting and fed mice, we validated three upregulated proteins (Pqlc2, Ehhadh and Apoa4) and two downregulated proteins (Uba52 and Rpl37) by western-blotting analysis. In cultured HepG2 hepatocellular cells, we found that depletion of Pqlc2 by siRNA-mediated knockdown impaired the insulin-induced glucose uptake, inhibited GLUT2 mRNA level and suppressed the insulin-induced Akt phosphorylation. By contrast, knockdown of Pqlc2 did not affect the cAMP/dexamethasone-induced gluconeogenesis. In conclusion, our study provides important information on protein profile change during prolonged fasting with iTRAQ- and LC-MS/MS-based quantitative proteomics, and identifies Pqlc2 as a potential regulator of hepatic glucose metabolism and insulin signalling pathway in this process.


Subject(s)
Proteomics , Animals , Glucose , Male , Mice , Signal Transduction
20.
Br J Pharmacol ; 178(10): 2111-2130, 2021 05.
Article in English | MEDLINE | ID: mdl-32037512

ABSTRACT

BACKGROUND AND PURPOSE: Non-alcoholic fatty liver disease (NAFLD) is a worldwide public health problem with no established pharmacological therapy. Here, we explored the potential benefit of P7C3-A20, a novel aminopropyl carbazole compound with neuroprotective activity, in a NAFLD model, induced in mice by a high-fat diet (HFD). EXPERIMENTAL APPROACH: C57BL/6J mice were given a HFD (42% fat content) for 16 weeks to induce NAFLD. P7C3-A20 (20 mg·kg-1 ·day-1 ) was given by gavage for 2 weeks. Indirect calorimetry, histological analysis, immunoblotting, immunohistochemistry, and biomedical examinations were performed. Gut microbiota were determined using a 16S ribosomal RNA sequencing analysis. KEY RESULTS: P7C3-A20 treatment reduced body weight gain/adiposity, improved insulin resistance, promoted energy expenditure (O2 consumption/CO2 production), inhibited lipid oxidation, suppressed hepatic inflammation (Kupffer cell number and pro-inflammatory factors), decreased necroptosis/apoptosis (receptor-interacting protein kinase 3, cleaved caspase-3, and TUNEL), and alleviated liver fibrosis and injury. Mechanistically, P7C3-A20 stimulated FGF21 and FGF1 via activating liver kinase B1 (LKB1) and AMP-activated protein kinase (AMPK), which further resulted in a reduced nuclear translocation of CREB-regulated transcription coactivator 2 (CRTC2). In AMPKα2 knockout mice, the protection of P7C3-A20 against HFD-induced metabolism abnormalities and fat accumulation, as well as the elevation of blood FGF21 and FGF1, was abolished. P7C3-A20 increased the gut microbiota species richness. Moreover, it enhanced the proportions of Akkermansia, Lactobacillus, and Prevotellaceae, while reducing the proportions of Enterobacteriaceae, Escherichia, and Parasutterella. CONCLUSIONS AND IMPLICATIONS: P7C3-A20 increased levels of NAD+ and alleviated NAFLD through stimulating FGF21 and FGF1 in an LKB1/AMPK/CRTC2-dependent manner and shaping gut microbiota. LINKED ARTICLES: This article is part of a themed issue on Cellular metabolism and diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.10/issuetoc.


Subject(s)
Carbazoles/pharmacology , Gastrointestinal Microbiome , Non-alcoholic Fatty Liver Disease , AMP-Activated Protein Kinases , Animals , Diet, High-Fat , Fibroblast Growth Factor 1 , Fibroblast Growth Factors , Liver , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...