Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Int Immunopharmacol ; 132: 112061, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38608474

ABSTRACT

OBJECTIVE: Osteoarthritis (OA) is a degenerative disease characterized by the gradual degeneration of chondrocytes, involving endoplasmic reticulum (ER) stress. Esculin is a natural compound with antioxidant, anti-inflammatory and anti-tumor properties. However, its impact on ER stress in OA therapy has not been thoroughly investigated. We aim to determine the efficiency of Esculin in OA treatment and its underlying mechanism. METHODS: We utilized the tert-butyl hydroperoxide (TBHP) to establish OA model in chondrocytes. The expression of SIRT1, PERK/eIF2α pathway-related proteins, apoptosis-associated proteins and ER stress-related proteins were detected by Western blot and Real-time PCR. The apoptosis was evaluated by flow cytometry and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) staining. X-ray imaging, Hematoxylin & Eosin staining, Safranin O staining and immunohistochemistry were used to assess the pharmacological effects of Esculin in the anterior cruciate ligament transection (ACLT) rat OA model. RESULTS: Esculin downregulated the expression of PERK/eIF2α pathway-related proteins, apoptosis-associated proteins and ER stress-related proteins, while upregulated the expression of SIRT1 and Bcl2 in the TBHP-induced OA model in vitro. It was coincident with the results of TUNEL staining and flow cytometry. We further confirmed the protective effect of Esculin in the rat ACLT-related model. CONCLUSION: Our results suggest the potential therapeutic value of Esculin on osteoarthritis. It probably inhibits the PERK-eIF2α-ATF4-CHOP pathway by upregulating SIRT1, thereby mitigating endoplasmic reticulum stress and protecting chondrocytes from apoptosis.


Subject(s)
Apoptosis , Chondrocytes , Disease Models, Animal , Eukaryotic Initiation Factor-2 , Osteoarthritis , Oxidative Stress , Rats, Sprague-Dawley , Signal Transduction , Sirtuin 1 , Transcription Factor CHOP , eIF-2 Kinase , Animals , Chondrocytes/drug effects , Chondrocytes/metabolism , Chondrocytes/pathology , Sirtuin 1/metabolism , Sirtuin 1/genetics , eIF-2 Kinase/metabolism , eIF-2 Kinase/genetics , Osteoarthritis/drug therapy , Osteoarthritis/metabolism , Osteoarthritis/pathology , Eukaryotic Initiation Factor-2/metabolism , Transcription Factor CHOP/metabolism , Transcription Factor CHOP/genetics , Rats , Oxidative Stress/drug effects , Male , Signal Transduction/drug effects , Apoptosis/drug effects , Endoplasmic Reticulum Stress/drug effects , Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...