Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 12(1): 3590, 2021 Jun 11.
Article in English | MEDLINE | ID: mdl-34117239

ABSTRACT

We revisit the meaning of stacking fault energy (SFE) and the assumptions of equilibrium dissociation of lattice dislocations in concentrated alloys. SFE is a unique value in pure metals. However, in alloys beyond the dilute limit, SFE has a distribution of values depending on the local atomic environment. Conventionally, the equilibrium distance between partial dislocations is determined by a balance between the repulsive elastic interaction between the partial dislocations and a unique value for SFE. This assumption is used to determine SFE from experimental measurements of dislocation splitting distances in metals and alloys, often contradicting computational predictions. We use atomistic simulations in a model NiCo alloy to study the dislocation dissociation process in a range of compositions with positive, zero, and negative average SFE and surprisingly observe a stable, finite splitting distance in all cases at low temperatures. We then compute the decorrelation stress and examine the balance of forces on the partial dislocations, considering the local effects on SFE, and observe that even the upper bound of SFE distribution alone cannot satisfy the force balance in some cases. Furthermore, we show that in concentrated solid solutions, the resisting force caused by interaction of dislocations with the local solute environment becomes a major force acting on partial dislocations. Here, we show that the presence of a high solute/dislocation interaction, which is not easy to measure and neglected in experimental measurements of SFE, renders the experimental values of SFE unreliable.

2.
Sci Rep ; 10(1): 10044, 2020 Jun 22.
Article in English | MEDLINE | ID: mdl-32572096

ABSTRACT

Lightweight sheet alloys with superior mechanical performance such as high strength, ductility and formability at room temperature (RT) are desirable for high volume automotive applications. However, ductility or formability of metallic alloys at RT are generally inversely related to strength, thereby making it difficult to optimize all three simultaneously. Here we design a new magnesium sheet alloy-ZAXME11100 (Mg-1.0Zn-1.0Al-0.5Ca-0.4Mn-0.2Ce, wt. pct.) via CALPHAD (CALculation of PHAse Diagram) modeling and experimental validation. This new sheet alloy offers an excellent RT formability with a high Index Erichsen (I.E.) value of 7.8 mm in a solution-treated condition (T4), due to its weak and split basal texture and fine grain structure. The new ZAXME 11100 alloy also shows a rapid age-hardening response during post-forming artificial aging treatment at 210 °C for 1 hour (T6), resulting in a significant increase of yield strength from 159 MPa (T4) to 270 MPa (T6). The excellent combination of T4 ductility (31%), T4 formability (7.8 mm) and T6 yield strength (270 MPa) in this new magnesium alloy is comparable to that of common 6xxx series aluminum sheet alloys. Thus, this new magnesium sheet alloy is highly attractive for sheet applications in automotive and other industries.

3.
Nat Commun ; 9(1): 1363, 2018 04 10.
Article in English | MEDLINE | ID: mdl-29636478

ABSTRACT

CrCoNi alloy exhibits a remarkable combination of strength and plastic deformation, even superior to the CrMnFeCoNi high-entropy alloy. We connect the magnetic and mechanical properties of CrCoNi, via a magnetically tunable phase transformation. While both alloys crystallize as single-phase face-centered-cubic (fcc) solid solutions, we find a distinctly lower-energy phase in CrCoNi alloy with a hexagonal close-packed (hcp) structure. Comparing the magnetic configurations of CrCoNi with those of other equiatomic ternary derivatives of CrMnFeCoNi confirms that magnetically frustrated Mn eliminates the fcc-hcp energy difference. This highlights the unique combination of chemistry and magnetic properties in CrCoNi, leading to a fcc-hcp phase transformation that occurs only in this alloy, and is triggered by dislocation slip and interaction with internal boundaries. This phase transformation sets CrCoNi apart from the parent quinary, and its other equiatomic ternary derivatives, and provides a new way for increasing strength without compromising plastic deformation.

SELECTION OF CITATIONS
SEARCH DETAIL
...