Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Colloids Surf B Biointerfaces ; 241: 114042, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38924850

ABSTRACT

In the field of orthopedics, surgeons have long been facing the challenge of loosening of external fixation screws due to inherent material characteristics. Despite Polyetheretherketone (PEEK) being employed as an orthopedic implant material for many years, its bio-inert nature often hinders bone healing due to the limited bioactivity, which restricts its clinical applications. Herein, a new type of orthopedic implant (Sr-SPK) was developed by introducing strontium (Sr)-doped mesoporous bioactive glass (Sr-MBG) onto the surface of PEEK implants through a simple and feasible method. In vitro experiments revealed that Sr-SPK effectively promotes osteogenic differentiation while concurrently suppressing the formation of osteoclasts. The same results were validated in vivo with Sr-SPK significantly improving bone integration. Upon investigation, it was found that Sr-SPK promotes adhesion among bone marrow mesenchymal stem cells (BMSCs) thereby promoting osteogenesis by activating the regulation of actin cytoskeletal and focal adhesion pathways, as identified via transcriptome analysis. In essence, these findings suggest that the newly constructed Sr-doped biofunctionalized PEEK implant developed in this research can promote osteoblast differentiation and suppress osteoclast activity by enhancing cell adhesion processes. These results underline the immense potential of such an implant for wide-ranging clinical applications in orthopedics.

2.
Adv Sci (Weinh) ; 11(5): e2302674, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38037309

ABSTRACT

Developing biomaterials with antimicrobial and wound-healing activities for the treatment of wound infections remains challenging. Macrophages play non-negligible roles in healing infection-related wounds. In this study, a new sequential immunomodulatory approach is proposed to promote effective and rapid wound healing using a novel hybrid hydrogel dressing based on the immune characteristics of bacteria-associated wounds. The hydrogel dressing substrate is derived from a porcine dermal extracellular matrix (PADM) and loaded with a new class of bioactive glass nanoparticles (BGns) doped with copper (Cu) and zinc (Zn) ions (Cu-Zn BGns). This hybrid hydrogel demonstrates a controlled release of Cu2+ and Zn2+ and sequentially regulates the phenotypic transition of macrophages from M1 to M2 by alternately activating nucleotide-binding oligomerization domain (NOD) and inhibiting mitogen-activated protein kinases (MAPK) signaling pathways. Additionally, its dual-temporal bidirectional immunomodulatory function facilitates enhanced antibacterial activity and wound healing. Hence, this novel hydrogel is capable of safely and efficiently accelerating wound healing during infections. As such, the design strategy provides a new direction for exploring novel immunomodulatory biomaterials to address current clinical challenges related to the treatment of wound infections.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Wound Infection , Animals , Swine , Copper , Hydrogels/chemistry , Wound Healing , Biocompatible Materials/chemistry , Wound Infection/drug therapy , Zinc
SELECTION OF CITATIONS
SEARCH DETAIL
...