Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; : 142761, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38969215

ABSTRACT

The presence of microplastics (MPs) products and particles in the environment can significantly impact the human body. Most MPs that enter the environment also enter the water cycle. During sunlight light irradiation (especially ultraviolet (UV) part) or UV disinfection, many of these MPs, particularly those rich in surface functional groups like thermoplastic polyurethanes (TPU), undergo physicochemical changes that can affect the formation of disinfection byproducts (DBPs). This study investigates the physicochemical changes of TPU in water after exposure to UV irradiation and incubation in the dark, as well as the formation of DBPs after chlorination. The results show that TPU undergo chain breakage, oxidation, and cross-linking when exposed to UV irradiation in an aqueous system. This leads to fragmentation into smaller particles, which facilitates the synthesis of DBPs. Subsequent research has demonstrated that the TPU leaching solution produces a significantly higher DBP content than the chlorination of TPU MPs, particularly at high concentrations of CHCl3. Therefore, it is important to give greater consideration to the soluble DBP precursors released by TPU.

2.
J Hazard Mater ; 476: 135040, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38943888

ABSTRACT

Graphene oxide (GO) is widely employed due to its outstanding properties, leading to an increasing release into the environment and natural waters. Although some studies have reported on the photo-transformation of GO, its behavior in complex natural waters remains inadequately explored. This study demonstrates that different types of ions may promote the photoreduction of GO in the order of Ca2+ > K+ > NO3- > Na+ by interacting with the functional groups on the surface of GO, and the photoreduction is enhanced with increasing ion concentrations. Additionally, natural organic matter (NOM) can inhibit the photoreduction of GO by scavenging reactive oxygen species. However, with increasing NOM concentrations (≥ 5 mgC/L), more NOM adsorb onto the surface of GO through hydrogen bonding, Lewis acid-base interactions, and π-π interactions, thereby enhancing the photoreduction of GO. On this basis, our results further indicate that the combined effects of different ions, such as Ca2+, Mg2+, NOM, and other complex hydrochemical conditions in different natural waters can promote the photoreduction of GO, resulting in a reduction in oxygen functional groups and the formation of defects. This study provides a theoretical basis for assessing the long-term transformation and fate of GO in natural waters.

3.
Chemosphere ; 362: 142650, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38901703

ABSTRACT

Biodegradable plastics (BPs) have seen a continuous increase in annual production and application due to their environmentally sustainable characteristics. However, research on the formation of disinfection byproducts (DBPs) from biodegradable microplastics (BMPs) during chlorination is limited, and the effects of aqueous solution chemistry on this process have yet to be explored. Therefore, two biodegradable microplastics, polylactic acid (PLA) and polybutylene adipate terephthalate (PBAT), were investigated in this study to examine the changes in their physicochemical properties before and after chlorination, and the formation of DBPs under different environmental conditions. The results showed that PLA was more chlorine-responsive, and generated more DBPs. The pH converted some of the intermediates into more stable DBPs by affecting the concentration of HClO and base-catalyzed reactions, whereas ionic strength slightly reduced DBP concentration by ion adsorption and promoting the aggregation of BMPs. Finally, since PLA has a slightly greater volume of mesopores and micropores compared to PBAT, it may more effectively adsorb DBP precursors beyond natural organic matter (NOM), such as some anthropogenic pollutants, thus potentially decreasing the formation of chlorinated DBPs in surface water. This research explored the potentiality for DBP formation by BMPs under different water quality conditions during the disinfection process, which is useful for assessing the environmental hazards of BMPs.

4.
J Hazard Mater ; 467: 133734, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38330647

ABSTRACT

Microplastics and antibiotics not only pollute aquatic environments and threaten human health, but are also tricky to remove. Microplastics adsorb antibiotics, and, before being released into the natural environment, most microplastics pass through some wastewater treatment and/or disinfection (such as chlorination) facilities. It is therefore necessary to understand how these treatment processes may affect or alter microplastics' properties, particularly their ability to adsorb antibiotics, and whether or not the two, when bound together, may present exacerbated harm to the environment. This study used both laboratory tests and molecular dynamics simulation to investigate the mechanism through which chlorinated microplastics (specifically polystyrene) adsorb the antibiotic tetracycline, and showed that chlorination gave the polystyrene a larger interaction area (> 21%) and more free energy (> 14%) to adsorb tetracycline. Van der Waals (vdW) forces played a more dominant role than electrostatics in facilitating tetracycline's adsorption. Moreover, a density functional theory analysis demonstrated that the vdW potentials of the microplastics decreased as more and more hydrogen atoms became replaced by chlorine, suggesting a facilitation of the adsorption of polycyclic antibiotic molecules. The experimental results confirmed the simulation's prediction that a higher degree of chlorination significantly increases the polystyrene's adsorption capacity, whereas pH and salinity had almost no effect on the adsorption. This study demonstrates that disinfection elevates the risk of antibiotics adhering to and accumulating on the surface of microplastics.


Subject(s)
Anti-Bacterial Agents , Halogenation , Humans , Microplastics , Plastics , Adsorption , Polystyrenes , Tetracycline
5.
Chemosphere ; 327: 138488, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36963574

ABSTRACT

Microplastics (MPs) are substances that pose a risk to both human life and the environment. Their types and production are increasing year on year, and their potential to cause environmental pollution is a worldwide concern. Conventional water treatment processes, particularly coagulation and sedimentation, are not effective at removing all MPs. It is therefore important to assess the morphological changes in the MPs, i.e., the thermoplastic polyurethane (TPU) and polyethylene (PE), during ozonation and the dissolved organic carbon leaching as well as chloroform formation in the subsequent chlorination. The results show that the appearance and surface chemistry of the MPs changed during the ozonation process, most notably for TPU. The trichloromethane (CHCl3) generation during chlorination was 0.168 and 0.152 µmol/L for TPU and PE, respectively, and the ozone pretreatment significantly increased the CHCl3 yield of TPU, while it had a weak effect on PE. Additional disinfection byproducts (DBPs), including CHCl2Br, CHClBr2, and CHBr3, were produced in the presence of bromide ions in the water column, and the total amount of DBPs produced by PE, PE-O, TPU, and TPU-O was significantly increased to 0.787, 0.814, 0.931, and 1.391 µmol/L, respectively. The study provides useful information for the environmental risk assessment of two representative MPs, i.e., TPU and MPs, in disinfection procedures for drinking water.


Subject(s)
Disinfectants , Ozone , Water Pollutants, Chemical , Water Purification , Humans , Disinfection/methods , Microplastics , Plastics , Halogenation , Water Purification/methods , Chloroform , Polyurethanes , Ozone/chemistry , Water Pollutants, Chemical/analysis , Disinfectants/chemistry
6.
Environ Pollut ; 323: 121254, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36773686

ABSTRACT

The large number of microplastics (MPs) that appear in the environment has drawn much attention. Few studies, however, have examined the transformation of MPs in water treatment processes and their effects on environmental pollutants. In this study, the alteration of the physicochemical characteristics of polyethylene and thermoplastic polyurethane upon chlorination, as well as the influence of this alteration on contaminants, were investigated. The findings indicated that microplastics underwent significant morphology and O-functional groups changes during chlorination. It is noteworthy that the mechanisms controlling the chlorination treatment of the two MPs are clearly different. The results of aggregation and adsorption experiments showed that the chlorination treatment enhanced the aggregation ability of the MPs in brine and their interaction with Cr(VI). The present discoveries further suggested that water treatment could alter the migration capacity of microplastics and the distribution of contaminants in the aqueous environment by altering the adsorption of microplastics to the contaminants.


Subject(s)
Microplastics , Water Pollutants, Chemical , Chromium , Plastics , Adsorption , Halogenation , Water Pollutants, Chemical/analysis
7.
Sci Total Environ ; 849: 157800, 2022 Nov 25.
Article in English | MEDLINE | ID: mdl-35934036

ABSTRACT

Considering the large volumes of treated water and incomplete elimination of pollutants, wastewater treatment plants (WWTPs) remain a considerable source of microplastics (MPs). Chlorine, the most frequently used disinfectant in WWTPs, has a strong oxidizing impact on MPs. However, little is documented, to date, about the impact of chlorination on the transformation of MPs and the subsequent environmental behaviors of the chlorinated MPs when released into the aquatic environment. This study explored the response of the physicochemical properties of specific thermoplastics, namely polyurethane (TPU) MPs and polystyrene (PS) MPs, to chlorination and their emerging pollutant [tetracycline (TC)] adsorption behavior in aqueous solution. The results indicated that the O/C ratio of the MP surface did not significantly change, and that there were increases in the O-containing functional groups of the TPU and PS MPs, after chlorination. The surface area of the chlorinated TPU MPs increased by 45 %, and that of the chlorinated PS increased by 21 %, compared with the pristine ones, which contributed to the TC adsorption. The adsorption isotherm fitting parameters suggested that the chlorinated TPU fitted the multilayer adsorption, and the chlorinated PS was inclined to the monolayer adsorption. The relative abundance of the O-containing functional groups, on the TPU surface, led to the release of CHCl3 molecules, and the clear surface irregularities and fissures occurred after chlorine treatment. No fissures were found on the surface of the chlorinated PS MPs. The hydrophobicity and electrostatic adsorption were proved to be the major impacts on the TC adsorption of the chlorinated MPs, and the subsequently formed hydrogen bonds led to the stronger adsorption capacity of the chlorinated TPU than the chlorinated PS MPs.


Subject(s)
Disinfectants , Environmental Pollutants , Water Pollutants, Chemical , Adsorption , Anti-Bacterial Agents , Chlorine , Halogenation , Microplastics , Plastics , Polystyrenes , Polyurethanes , Tetracycline , Water , Water Pollutants, Chemical/analysis
8.
Chemosphere ; 303(Pt 2): 135102, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35623421

ABSTRACT

With the increased use of microplastics in modern society, tonnes of various microplastics (MPs) end up in natural and engineered water systems if not properly handled. Being a class of organics, the role of MPs during the disinfection of water treatment systems is still unclear at this stage. In the current experimental study, the formation of 6 typical disinfection by-products (DBPs) was investigated using varying concentrations of polypropylene (PP) MPs under various aquatic chemistry conditions and disinfectants. All investigated DBPs were detected, during the chlorination of PP, with an average CHCl3 concentration of 378 µg/g, and other DBPs, including CHCl2Br, TCA, DCAN, 1,1-DCP, and TCNM, were present in less than 60 µg/g, on average. When PP coexisted with Suwannee River Fulvic acid (SRFA), a suppression of DBP formation was observed with a 56% net reduction compared with a condition of PP alone. The dynamic balance of being a DBP precursor, or a scavenger, by absorbing the organics of PP is subjected to aquatic chemistry. Increasing the pH decreases the HOCl concentrations, reducing the PP oxidation capacity and DBP formation. As salinity increases, the aggregation of PP can reduce the reaction sites on the surface of PP and enhance the adsorption of SRFA, hence lowering the formation of DBPs.


Subject(s)
Disinfectants , Water Pollutants, Chemical , Water Purification , Disinfection , Halogenation , Microplastics , Plastics , Polypropylenes , Water Pollutants, Chemical/analysis
9.
Chemosphere ; 296: 134067, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35216978

ABSTRACT

Microplastics have attracted extensive attention and concern because they inflict damage on human beings and the environment. When the microplastics enter the water system, they inevitably flow into the water treatment system and encounter disinfectants during the disinfection procedure. Chlorine can react with microplastics to form different kinds of disinfection byproducts (DBPs). O-containing functional groups on the surface of microplastics may play a major role in DBP formation. Without O-containing functional groups, microplastics can also form DBPs but with totally different mechanisms. Reactive oxygen species (ROS, i.e., •OH) and reactive chlorine substances (RCS, i.e., Cl• and ClO•) may attack the microplastics and form DBP precursors. With relatively low surface area and very little pore volume, microplastics cannot affect the DBP formation between Suwannee River fulvic acid (SRFA) and chlorine. When SRFA exists, microplastics with few O-containing functional groups can hardly form DBPs because of the inhibition of ROS and RCS.


Subject(s)
Disinfectants , Water Pollutants, Chemical , Water Purification , Chlorine/analysis , Disinfection , Halogenation , Halogens , Humans , Microplastics , Plastics , Reactive Oxygen Species , Water Pollutants, Chemical/analysis , Water Purification/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...