Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 18(11): e0288309, 2023.
Article in English | MEDLINE | ID: mdl-37917736

ABSTRACT

Vegetables represent an important agricultural industry in China. New farmers and new technologies for vegetable production have emerged in recent years, which makes farmer training very necessary. On the other hand, massive open online courses (MOOCs) are currently widely used in universities. The purpose of this study is to investigate the importance of different sections of a university MOOC focused on olericulture to farmers with different demographic characteristics and provide a basis to improve university MOOCs for farmer training. The survey results suggest that the age, education level, gender, farmer scale, facility type and profit of farmer learners are important factors determining evaluations of the importance of different MOOC sections, indicating that services customized to different farmer populations are necessary. Among different sections of MOOC "Olericulture", farmers with younger age, higher education, larger farm, more advanced facility and more profit were more interesting in sections include cultural, social and theoretical knowledge, and less interesting in practical skill sections. Based on the survey, eight new sections including one marketing subsection (new agricultural supplies and market news), one social subsection (laws and regulations), two practical subsections (practice videos, photos and videos from other farms), and three comprehensive subsections (discussion of practical issues, mechanization, and smart olericulture) were added to the original MOOC, and the results indicate that this improvement is efficient in enhancing the importance evaluations and profits of all farmer learners, especially among those with high education levels.


Subject(s)
Education, Distance , Humans , Education, Distance/methods , Universities , Farmers , Educational Measurement , Educational Status
2.
Int J Mol Sci ; 23(21)2022 Oct 29.
Article in English | MEDLINE | ID: mdl-36361943

ABSTRACT

Size is the most important quality attribute of giant pumpkin fruit. Different concentrations and application frequencies of α-naphthaleneacetic acid (NAA) and 24-epibrassinolide (EBR) were sprayed on the leaves and fruits of giant pumpkin at different growth stages to determine their effects and the mechanism responsible for fruit size increase. NAA+EBR application improved source strength, and further analysis indicated that NAA+EBR markedly boosted net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr) and the expression level and activity of galactitol synthetase (GolS), raffinose synthetase (RS), and stachyose synthetase (STS), resulting in an increase in the synthesis of photoassimilate, especially stachyose. Concomitantly, NAA+EBR spray increased stachyose and sucrose contents throughout pumpkin fruit growth and the concentrations of glucose and fructose at 0 and 20 days post-anthesis (DPA) in peduncle phloem sap, implying that such treatment improved the efficiency of assimilate transport from the peduncle to the fruit. Furthermore, it improved the expression and activity of alkaline α-galactosidase (AGA), facilitating assimilate unloading, providing carbon skeletons and energy for fruit growth, and increasing fruit weight by more than 44.1%. Therefore, exogenous NAA and EBR increased source capacity, transportation efficiency, and sink strength, overall promoting the synthesis and distribution of photoassimilate, ultimately increasing fruit size.


Subject(s)
Cucurbita , Fruit , Fruit/metabolism , Sugars/metabolism , Ligases/metabolism
3.
Int J Mol Sci ; 22(22)2021 Nov 12.
Article in English | MEDLINE | ID: mdl-34830140

ABSTRACT

The smut fungus Ustilago esculenta infects Zizania latifolia and induces stem expansion to form a unique vegetable named Jiaobai. Although previous studies have demonstrated that hormonal control is essential for triggering stem swelling, the role of hormones synthesized by Z. latifolia and U. esculenta and the underlying molecular mechanism are not yet clear. To study the mechanism that triggers swollen stem formation, we analyzed the gene expression pattern of both interacting organisms during the initial trigger of culm gall formation, at which time the infective hyphae also propagated extensively and penetrated host stem cells. Transcriptional analysis indicated that abundant genes involving fungal pathogenicity and plant resistance were reprogrammed to maintain the subtle balance between the parasite and host. In addition, the expression of genes involved in auxin biosynthesis of U. esculenta obviously decreased during stem swelling, while a large number of genes related to the synthesis, metabolism and signal transduction of hormones of the host plant were stimulated and showed specific expression patterns, particularly, the expression of ZlYUCCA9 (a flavin monooxygenase, the key enzyme in indole-3-acetic acid (IAA) biosynthesis pathway) increased significantly. Simultaneously, the content of IAA increased significantly, while the contents of cytokinin and gibberellin showed the opposite trend. We speculated that auxin produced by the host plant, rather than the fungus, triggers stem swelling. Furthermore, from the differently expressed genes, two candidate Cys2-His2 (C2H2) zinc finger proteins, GME3058_g and GME5963_g, were identified from U. esculenta, which may conduct fungus growth and infection at the initial stage of stem-gall formation.


Subject(s)
Basidiomycota/genetics , Disease Resistance/genetics , Gene Expression Profiling/methods , Plant Diseases/genetics , Plant Tumors/genetics , Poaceae/genetics , Amino Acid Sequence , Basidiomycota/metabolism , Basidiomycota/pathogenicity , Fungal Proteins/classification , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , Gene Expression Regulation, Plant , Host-Pathogen Interactions/genetics , Hyphae/genetics , Hyphae/metabolism , Hyphae/pathogenicity , Indoleacetic Acids/metabolism , Oxygenases/genetics , Oxygenases/metabolism , Phylogeny , Plant Diseases/microbiology , Plant Growth Regulators/biosynthesis , Plant Proteins/classification , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Stems/genetics , Plant Stems/metabolism , Plant Stems/microbiology , Plant Tumors/microbiology , Poaceae/metabolism , Poaceae/microbiology , Sequence Homology, Amino Acid , Virulence/genetics
4.
PLoS One ; 16(1): e0244714, 2021.
Article in English | MEDLINE | ID: mdl-33434225

ABSTRACT

Six putative α-galactosidase genes (α-Gals), three acid forms (CsGAL1, CsGAL2, CsGAL3) and three alkaline forms (CsAGA1, CsAGA2, CsAGAL3), were found in the cucumber genome. It is interesting to know the expression pattern and possible function of these α-Gals in the cucumber plant since it is a stachyose-translocating species. In this study, full-length cDNAs of six α-Gals were cloned and heterologously expressed. The result showed that all recombinant proteins revealed acid or alkaline α-Gal activities with different substrate specificities and pH or temperature responding curves, indicating their distinct roles in cucumber plants. Phylogenetic analysis of collected α-Gal amino acid sequences from different plants indicated that the ancestor of both acid and alkaline α-Gals existed before monocots and dicots separated. Generally, six α-Gal genes are universally expressed in different cucumber organs. CsGAL2 highly expressed in fasting-growing leaves, fruits and germinating seeds; CsGAL3 mainly distributes in vacuoles and significantly expressed in cucumber fruits, senescent leaves and seeds during late stage germination; The expression of CsAGA1 increased from leaf 1 to leaf 3 (sink leaves) and then declined from leaf 4 to leaf 7 (source leaves), and this isoform also highly expressed in male flowers and germinating seeds at early stage; CsAGA2 significantly expressed in cucumber leaves and female flowers; CsAGA3 is localized in plastids and also actively expressed in senescent leaves and germinating seeds; The role of CsGAL1 in cucumber plants is now unclear since its expression was relatively low in all organs. According to their expression patterns, subcellular localizations and previously reported functions of these isoforms in other plants, combining the data of soluble sugars contents in different tissues, the possible functions of these α-Gals were discussed.


Subject(s)
Cucumis sativus/genetics , Gene Expression Regulation, Plant , Plant Proteins/genetics , alpha-Galactosidase/genetics , Fruit/genetics , Phylogeny , Plant Leaves/genetics , Seeds/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...