Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
Microbiol Spectr ; 10(3): e0026522, 2022 06 29.
Article in English | MEDLINE | ID: mdl-35510850

ABSTRACT

Antimicrobial resistance in Morganella morganii is increasing in recent years, which is mainly introduced via extra genetic and mobile elements. The aim of our study is to analyze the multidrug resistance (MDR) and characterize the mobile genetic elements (MGEs) in M. morganii isolates. Here, we report the characteristic of a pathogenic M. morganii isolate containing multidrug resistance genes that are mainly carried by a novel transposon Tn7376 and a genomic island. Sequence analysis suggested that the Tn7376 could be generated through homologous recombination between two different IS26-bounded translocatable units (TUs), namely, module A (IS26-Hp-IS26-mph(A)-mrx(A)-mphR-IS6100-chrA-sul1-qacEΔ1) and module B (ISCR1-sul1-qacEΔ1-cmlA1-aadA1-aadB-intI1-IS26), and the genomic island named MMGI-4 might derive from a partial structure of different original genomic islands that also carried IS26-mediated TUs. Notably, a 2,518-bp sequence linked to the module A and B contains a 570-bp dfrA24 gene. To the best of our knowledge, this is the first report of the novel Tn7376 possessing a complex class 1 integron that carried an infrequent gene dfrA24 in M. morganii. IMPORTANCE Mobile genetic elements (MGEs), especially for IS26-bounded translocatable units, may act as a reservoir for a variety of antimicrobial resistance genes in clinically important pathogenic bacteria. We expounded this significant genetic characteristic by investigating a representative M. morganii isolate containing multidrug resistance genes, including the infrequent dfrA24. Our study suggested that these acquired resistance genes were mainly driven by IS26-flanked important MGEs, such as the novel Tn7376 and the MMGI-4. We demonstrated that IS26-related MGEs contributed to the emergence of the extra gene dfrA24 in M. morganii through some potential genetic events like recombination, transposition, and integration. Therefore, it is of importance to investigate persistently the prevalence these MEGs in the clinical pathogens to provide risk assessment of emergence and development of novel resistance genes.


Subject(s)
DNA Transposable Elements , Drug Resistance, Multiple, Bacterial , Genomic Islands , Morganella morganii , Anti-Bacterial Agents , Drug Resistance, Multiple, Bacterial/genetics , Genes, MDR , Integrons/genetics , Morganella morganii/genetics
2.
Huan Jing Ke Xue ; 42(2): 595-603, 2021 Feb 08.
Article in Chinese | MEDLINE | ID: mdl-33742853

ABSTRACT

In this study, PM2.5 samples were collected synchronously at Gaoxin and Linxiao in Luoyang City during autumn and winter (4 October 2018 to 30 January 2019). Sixteen priority polycyclic aromatic hydrocarbons (PAHs) associated with fine particulate matter were analyzed by gas chromatography mass spectrometry (GC-MS). The concentrations and composition characteristics of the PAHs on clean and polluted days were studied. Diagnostic ratio analysis and principal component analysis (PCA) were used to identify the emission sources of PM2.5-bound PAHs and the equivalent carcinogenic concentration of benzo[a]pyrene (BaP) and incremental lifetime cancer risks (ILCRs) model were applied to evaluate health risks. During the sampling period, the concentrations of PAHs at Gaoxin and Linxiao ranged 24.33-90.26 ng·m-3 and 23.81-76.99 ng·m-3, respectively. With the increase in PM2.5 pollution, PAH concentrations increase significantly (the mean PAH concentration on polluted days was approximately 1.3 times higher than during clean days). PAH profiles at different polluting levels were similar; 4-ring PAHs (43%-48%) > 5-6 ring PAHs (32%-35%) > 2-3-ring PAHs (20%-22%). Diagnostic ratios and PCA demonstrated that PAHs in the study area were mainly derived from combustion sources including coal combustion, biomass burning, and motor vehicle emissions. The coal combustion was the main pollution source in the study area (clean days=49.28%-56.38%, polluted days=49.44%-60.60%). The results of the equivalent carcinogenic concentration of benzo[a]pyrene (BaP) and ILCR model revealed that the human health risk on polluted days was higher. Moreover, the cancer risks from adult exposure to PAHs were higher than those child exposure, which has an acceptable level of risk (<10-6).


Subject(s)
Air Pollutants , Polycyclic Aromatic Hydrocarbons , Adult , Air Pollutants/adverse effects , Air Pollutants/analysis , Child , China , Cities , Environmental Monitoring , Humans , Particulate Matter/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Risk Assessment , Seasons
3.
Huan Jing Ke Xue ; 42(1): 19-29, 2021 Jan 08.
Article in Chinese | MEDLINE | ID: mdl-33372453

ABSTRACT

To study the characteristics of PM2.5 pollution and the potential sources of its main components in the central plain urban agglomeration in autumn and winter, PM2.5 samples were collected continually in the four typical cities of Zhengzhou, Luoyang, Anyang, and Xinxiang from October 2018 to January 2019. X-ray fluorescence spectrometry, carbon analysis methods, and ion chromatography were used to determine 18 kinds of inorganic elements, organic carbon (OC)/elemental carbon (EC), and 9 kinds of water-soluble inorganic ions. According to the daily PM2.5 concentration, three pollution levels were divided, and the comparative analysis for the spatial and temporal variation of PM2.5 and its main components, i.e., NO3-, OC, and 18 kinds of inorganic elements, were studied via the calculation of the nitrogen oxidation rate (NOR), secondary organic carbon (SOC), and enrichment factor. The emission sources and their contribution rates of PM2.5 pollution level in the four cities were calculated by a chemical mass balance (CMB) model; the potential pollution sources of PM2.5 and its main components, NO3- and OC, in the four cities were analyzed by a backward trajectory model (HYSPLIT) and potential source contribution factor method (PSCF). The results showed that the means of PM2.5 in Zhengzhou, Luoyang, Anyang, and Xinxiang were (82.1±45.5), (84.7±39.8), (96.8±46.1), and (81.1±36.6) µg·m-3, respectively, during the sampling period, and the maximum daily mean values were 3.3, 2.6, 3.0, and 2.3 times, respectively, of the Chinese national secondary standard; the main components of PM2.5 in the four cities were NO3- and SOC, and the concentration of NO3-, the ratio of NO3-/EC, and NOR all increased significantly with the rising of pollution levels, generally showing that the mean values of NO3-/EC and NOR of Zhengzhou and Luoyang were a little higher than those of Anyang and Xinxiang; the concentration of SOC, the proportion of SOC in OC, and the ratio of SOC/EC all increased with the rising of pollution levels. From the concentration and enrichment degree of inorganic elements, As was the highest in Zhengzhou; Mn and Fe were the highest in Luoyang; Zn, Ni, and Cr were the highest in Anyang; and Cu and Pb were the highest in Xinxiang. Secondary nitrate, secondary sulfate, organic matter, coal combustion, motor vehicle, dust, biomass burning, and industrial processes were the main PM2.5 pollution sources in the four cities, with the highest contribution rate of secondary nitrate in Zhengzhou (37.7%), the highest contribution rate of vehicle sources in Xinxiang (14.1%), and a relatively high contribution rate of industrial process source in Luoyang (7.0%) and Anyang (6.8%). The northwest direction of airflow contributed 51.6%, 49.2%, 49.6%, and 46.3% of the total airflow in Zhengzhou, Luoyang, Anyang, and Xinxiang, respectively. From the potential pollution area of each city, the Zhengzhou area was mainly concentrated in Henan province, the Luoyang area was mainly concentrated in the south of Henan province and Fen-wei plain, and the Anyang and Xinxiang areas were mainly concentrated in Henan province and the Beijing-Tianjin-Hebei transport belt. The pollution levels of OC in Anyang and Xinxiang were also affected by the northwest Anhui, southwest Shandong, southeast Shanxi, and north Shaanxi.

SELECTION OF CITATIONS
SEARCH DETAIL
...