Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
1.
ChemSusChem ; : e202400466, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727153

ABSTRACT

As a result of full-scale ongoing global efforts, the power conversion efficiency (PCE) of the organic-inorganic metal halide perovskite has skyrocketed. Unfortunately, the long-term operational stability for commercialization standards is still lagging owing to intrinsic defects such as ion migration-induced degradation, undercoordinated Pb2+, and shallow defects initiated by disordered crystal growth. Herein, we employed multifunctional, non-volatile tetra-methyl guanidine hydrochloride [TMGHCL] ionic liquid (IL) as an additive to elucidate defects' passivation effects on organic-inorganic metal halide perovskite. More specifically, the formation of hydrogen bonds between H+ in GA+ and I- and coordinate bonding between Cl- and undercoordinated Pb2+ could significantly passivate these defects. The hypothesis was confirmed by both experimental and DFT simulations displaying that the optimized ratio of IL integration restrains ion migration, improving grains' size, and significantly elongating the carrier lifetime. Remarkably, the modified cell achieved a peak efficiency of 22.00 % with negligible hysteresis, compared to the control device's PCE of 20.12 %. In addition, the TMGHCL-based device retains its 93.29 % efficiency after 16 days of continuous exposure to air with a relative humidity of 35±5% and temperature of 25±5 °C. This efficient approach of adding IL to perovskites absorber can produce high PCE and has strong commercialization potential.

2.
Article in English | MEDLINE | ID: mdl-38652094

ABSTRACT

The high photoelectric conversion efficiency and low cost of perovskite solar cells (PSCs) have further inspired people's determination to push this technology toward industrialization. The high-quality perovskite films and high-efficiency and stable PSCs are the crucial factors. Ionic liquids have been proven to be an effective strategy for regulating high-quality perovskite films and high-performance PSCs. However, the regulation mechanism between ionic liquids and perovskites still needs further clarification. In this study, a novel sulfonic acid-functionalized ionic liquid, 1-butyl-3-methylimidazolium trifluoromethanesulfonate (BSO3HMImOTf), was used as an effective additive to regulate high-quality perovskite films and high-performance devices. Microscopic mechanism studies revealed strong interactions between BSO3HMImOTf and Pb2+ ions as well as halogens in the perovskite. The perovskite film is effectively passivated with the controlled crystal growth, suppressed ion migration, facilitating to the greatly improved photovoltaic performance, and superior long-term stability. This article reveals the regulatory mechanism of sulfonic acid type ionic liquids through testing characterization and mechanism analysis, providing a new approach for the preparation of high-quality perovskite devices.

3.
Nat Commun ; 15(1): 2124, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38459025

ABSTRACT

Activatable afterglow luminescence nanoprobes enabling switched "off-on" signals in response to biomarkers have recently emerged to achieve reduced unspecific signals and improved imaging fidelity. However, such nanoprobes always use a biomarker-interrupted energy transfer to obtain an activatable signal, which necessitates a strict distance requisition between a donor and an acceptor moiety (<10 nm) and hence induces low efficiency and non-feasibility. Herein, we report organic upconversion afterglow luminescence cocktail nanoparticles (ALCNs) that instead utilize acidity-manipulated singlet oxygen (1O2) transfer between a donor and an acceptor moiety with enlarged distance and thus possess more efficiency and flexibility to achieve an activatable afterglow signal. After in vitro validation of acidity-activated afterglow luminescence, ALCNs achieve in vivo imaging of 4T1-xenograft subcutaneous tumors in female mice and orthotopic liver tumors in male mice with a high signal-to-noise ratio (SNR). As a representative targeting trial, Bio-ALCNs with biotin modification prove the enhanced targeting ability, sensitivity, and specificity for pulmonary metastasis and subcutaneous tumor imaging via systemic administration of nanoparticles in female mice, which also implies the potential broad utility of ALCNs for tumor imaging with diverse design flexibility. Therefore, this study provides an innovative and general approach for activatable afterglow imaging with better imaging performance than fluorescence imaging.


Subject(s)
Liver Neoplasms , Nanoparticles , Humans , Female , Male , Animals , Mice , Luminescence , Optical Imaging
4.
Angew Chem Int Ed Engl ; 63(11): e202318545, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38247345

ABSTRACT

Afterglow imaging holds great promise for ultrasensitive bioimaging due to its elimination of autofluorescence. Self-sustaining afterglow molecules (SAMs), which enable all-in-one photon sensitization, chemical defect formation and afterglow generation, possess a simplified, reproducible, and efficient superiority over commonly used multi-component systems. However, there is a lack of SAMs, particularly those with much brighter near-infrared (NIR) emission and structural flexibility for building high-contrast activatable imaging probes. To address these issues, this study for the first time reports a methylene blue derivative-based self-sustaining afterglow agent (SAN-M) with brighter NIR afterglow chemiluminescence peaking at 710 nm. By leveraging the structural flexibility and tunability, an activatable nanoprobe (SAN-MO) is customized for simultaneously activatable fluoro-photoacoustic and afterglow imaging of peroxynitrite (ONOO- ), notably with a superior activation ratio of 4523 in the afterglow mode, which is at least an order of magnitude higher than other reported activatable afterglow systems. By virtue of the elimination of autofluorescence and ultrahigh activation contrast, SAN-MO enables early monitoring of the LPS-induced acute inflammatory response within 30 min upon LPS stimulation and precise image-guided resection of tiny metastatic tumors, which is unattainable for fluorescence imaging.


Subject(s)
Lipopolysaccharides , Nanoparticles , Luminescence , Optical Imaging , Nanoparticles/chemistry
6.
Adv Mater ; 36(4): e2305243, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37643544

ABSTRACT

Photodynamic therapy (PDT), which utilizes type I photoreactions, has great potential as an effective cancer treatment because of its hypoxia-tolerant superiority over the commonly used type II pathway. A few type I photosensitizers are exploited; however, they majorly induce cytotoxicity and possess poor tumor specificity and low-efficient theranostics. To resolve this issue, herein an aminopeptidase N (APN)-activated type I phototheranostic probe (CyA) is reported for anti-hypoxic PDT in conjunction with immunotherapy for effective cancer treatment. CyA can specifically activate near-infrared fluorescence, photoacoustic signals, and phototoxicity following APN-induced substrate cleavage and the subsequent generation of active phototheranostic molecules (such as CyBr). CyA endows specific imaging capabilities and effective phototoxicity toward tumor cells overexpressing APN under both normoxia and hypoxia. In addition, the locally activatable PDT induces systemic antitumor immune responses. More importantly, the integration of localized activated PDT and systemic immunotherapy evokes enhanced therapeutic effects with improved tumor inhibition efficiency in live mice compared with individual treatments. This study aims to present an activatable phototheranostic probe for effective hypoxia-tolerant PDT and combination therapy.


Subject(s)
Neoplasms , Photochemotherapy , Animals , Mice , Photochemotherapy/methods , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Hypoxia , Immunotherapy , Cell Line, Tumor
7.
Angew Chem Int Ed Engl ; 63(4): e202313117, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38018329

ABSTRACT

Afterglow luminescence imaging probes, with long-lived emission after cessation of light excitation, have drawn increasing attention in biomedical imaging field owing to their elimination of autofluorescence. However, current afterglow agents always suffer from an unsatisfactory signal intensity and complex systems consisting of multiple ingredients. To address these issues, this study reports a near-infrared (NIR) afterglow luminophore (TPP-DO) by chemical conjugation of an afterglow substrate and a photosensitizer acting as both an afterglow initiator and an energy relay unit into a single molecule, resulting in an intramolecular energy transfer process to improve the afterglow brightness. The constructed TPP-DO NPs emit a strong NIR afterglow luminescence with a signal intensity of up to 108  p/s/cm2 /sr at a low concentration of 10 µM and a low irradiation power density of 0.05 W/cm2 , which is almost two orders of magnitude higher than most existing organic afterglow probes. The highly bright NIR afterglow luminescence with minimized background from TPP-DO NPs allows a deep tissue penetration depth ability. Moreover, we develop a GSH-activatable afterglow probe (Q-TPP-DO NPs) for ultrasensitive detection of subcutaneous tumor with the smallest tumor volume of 0.048 mm3 , demonstrating the high potential for early diagnosis and imaging-guided surgical resection of tumors.


Subject(s)
Nanoparticles , Neoplasms , Humans , Nanoparticles/chemistry , Diagnostic Imaging , Photosensitizing Agents/chemistry , Luminescence
8.
Angew Chem Int Ed Engl ; 63(8): e202317972, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38116884

ABSTRACT

The pursuit of highly efficient and stable wide-band gap (WBG) perovskite solar cells (PSCs), especially for monolithic perovskite/silicon tandem devices, is a key focus in achieving the commercialization of perovskite photovoltaics. In this study, we initially designed poly(ionic liquid)s (PILs) with varying alkyl chain lengths based on density functional theory calculations. Results pinpoint that PILs with longer alkyl chain lengths tend to exhibit more robust binding energy with the perovskite structure. Then we synthesized the PILs to craft a hydrophobic hydrogen-bonded polymer network (HHPN) that passivates the WBG perovskite/electron transport layer interface, inhibits ion migration and serves as a barrier layer against water and oxygen ingression. Accordingly, the HHPN effectively curbs nonradiative recombination losses while facilitating efficient carrier transport, resulting in substantially enhanced open-circuit voltage (Voc ) and fill factor. As a result, the optimized single-junction WBG PSC achieves an impressive efficiency of 23.18 %, with Voc as high as 1.25 V, which is the highest reported for WBG (over 1.67 eV) PSCs. These devices also demonstrate outstanding thermostability and humidity resistance. Notably, this versatile strategy can be extended to textured perovskite/silicon tandem cells, reaching a remarkable efficiency of 28.24 % while maintaining exceptional operational stability.

9.
Arthritis Res Ther ; 25(1): 206, 2023 10 19.
Article in English | MEDLINE | ID: mdl-37858140

ABSTRACT

BACKGROUND: Circular RNAs are involved in autoimmune disease pathogenesis. Our previous study indicated that circPTPN22 is involved in autoimmune diseases, such as systemic lupus erythematosus (SLE) and rheumatoid arthritis, but the underlying mechanisms remain unclear. METHODS: First, the expression of circPTPN22 was detected by real-time PCR and western blotting. After overexpression or knockdown of circPTPN22, the proliferation of Jurkat cells was detected by the CCK-8 assay, and the apoptosis of Jurkat cells was detected by flow cytometry. In addition, the relationship between circPTPN22-miR-4689-S1PR1 was confirmed by bioinformatic analyses, fluorescence in situ hybridization assays, RNA-binding protein immunoprecipitation, and dual luciferase reporter assays. RESULTS: We found that circPTPN22 expression was downregulated in the PBMCs of SLE patients compared to those of healthy controls. Overexpression of circPTPN22 increased proliferation and inhibited apoptosis of Jurkat T cells, whereas knockdown of circPTPN22 exerted the opposite effects. CircPTPN22 acts as a miR-4689 sponge, and S1PR1 is a direct target of miR-4689. Importantly, the circPTPN22/miR-4689/S1PR1 axis inhibited the secretion of TNF-α and IL-6 in Jurkat T cells. CONCLUSIONS: CircPTPN22 acts as a miR-4689 sponge to regulate T-cell activation by targeting S1PR1, providing a novel mechanism for the pathogenesis of SLE.


Subject(s)
Lupus Erythematosus, Systemic , MicroRNAs , Protein Tyrosine Phosphatase, Non-Receptor Type 22 , RNA, Circular , Sphingosine-1-Phosphate Receptors , T-Lymphocytes , Humans , In Situ Hybridization, Fluorescence , Jurkat Cells , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/immunology , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , MicroRNAs/genetics , MicroRNAs/immunology , Protein Tyrosine Phosphatase, Non-Receptor Type 22/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 22/immunology , RNA, Circular/genetics , RNA, Circular/immunology , Sphingosine-1-Phosphate Receptors/genetics , Sphingosine-1-Phosphate Receptors/immunology , T-Lymphocytes/immunology
10.
Anal Chem ; 95(37): 13984-13991, 2023 09 19.
Article in English | MEDLINE | ID: mdl-37672619

ABSTRACT

Early evaluation and prediction of the radiotherapy effect against tumors are crucial for effective radiotherapy management. The clinical approach generally relies on anatomical changes in tumor size, which is unable to promptly reflect clinical outcomes and guide a timely adjustment of therapy regimens. To resolve it, we herein develop a self-assembled organic probe (dCyFFs) with caspase-3 (Casp-3)-activatable near-infrared (NIR) fluoro-photoacoustic signals for early evaluation and prediction of radiotherapy efficacy. The probe contains an NIR dye that is caged with a Casp-3-cleavable substrate and linked to a self-assembly initiating moiety. In the presence of Casp-3, the self-assembled probe can undergo secondary assembly into larger nanoparticles and simultaneously activate NIR fluoro-photoacoustic signals. Such a design endows a superior real-time longitudinal imaging capability of Casp-3 generated by radiotherapy as it facilitates the passive accumulation of the probe into tumors, activated signal output with enhanced optical stability, and retention capacity relative to a nonassembling small molecular control probe (dCy). As a result, the probe enables precise prediction of the radiotherapy effect as early as 3 h posttherapy, which is further evidenced by the changes in tumor size after radiotherapy. Overall, the probe with Casp-3-mediated secondary assembly along with activatable NIR fluoro-photoacoustic signals holds great potential for evaluating and predicting the response of radiotherapy in a timely manner, which can also be explored for utilization in other therapeutic modalities.


Subject(s)
Molecular Probes , Nanoparticles , Spectrum Analysis
11.
Adv Sci (Weinh) ; 10(24): e2300217, 2023 08.
Article in English | MEDLINE | ID: mdl-37341286

ABSTRACT

Precise detection of early osteolytic metastases is crucial for their treatment but remains challenging in the clinic because of the limited sensitivity and specificity of traditional imaging techniques. Although fluorescence imaging offers attractive features for the diagnosis of osteolytic metastases, it is hampered by limited penetration depth. To address this issue, a fluoro-photoacoustic dual-modality imaging probe comprising a near-infrared dye caged by a cathepsin K (CTSK)-cleavable peptide sequence on one side and functionalized with osteophilic alendronate through a polyethylene glycol linker on the other side is reported. Through systematic in vitro and in vivo experiments, it is demonstrated that in response to CTSK, the probe generated both near-infrared fluorescent and photoacoustic signals from bone metastatic regions, thus offering a potential strategy for detecting deep-seated early osteolytic metastases.


Subject(s)
Photoacoustic Techniques , Photoacoustic Techniques/methods , Cathepsin K , Diagnostic Imaging
12.
Angew Chem Int Ed Engl ; 62(33): e202307228, 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37337312

ABSTRACT

The photoelectric properties of nontoxic Sn-based perovskite make it a promising alternative to toxic Pb-based perovskite. It has superior photovoltaic performance in comparison to other Pb-free counterparts. The facile oxidation of Sn2+ to Sn4+ presents a notable obstacle in the advancement of perovskite solar cells that utilize Sn, as it adversely affects their stability and performance. The study revealed the presence of a Sn4+ concentration on both the upper and lower surfaces of the perovskite layer. This discovery led to the adoption of a bi-interface optimization approach. A thin layer of Sn metal was inserted at the two surfaces of the perovskite layer. The implementation of this intervention yielded a significant decrease in the levels of Sn4+ and trap densities. The power conversion efficiency of the device was achieved at 14.31 % through the optimization of carrier transportation. The device exhibited operational and long-term stability.

13.
Res Microbiol ; 174(7): 104078, 2023.
Article in English | MEDLINE | ID: mdl-37149078

ABSTRACT

Aim of this study was to investigate the prevalence and genetic environment of the oxazolidinone resistance gene optrA in Streptococcus suis (S. suis) isolates from diseased pigs in China. A total of 178 S. suis isolates were screened for the optrA gene by PCR. The phenotypes and genotypes of optrA-positive isolates were investigated by antimicrobial susceptibility testing, core genome Multilocus Sequence Typing (cgMLST), capsular serotypes determination and whole-genome sequencing (WGS). Fifty-one (28.7%) S. suis isolates were positive for optrA. Phylogenetic analysis indicated that the spread of the optrA among S. suis isolates was primarily due to horizontal transfer. Analysis of S. suis serotypes from diseased pigs revealed substantial diversity. The genetic environment of optrA was complex and diverse and could be divided into 12 different types. Interestingly, we identified a novel integrative and conjugative element ICESsu988S, carrying optrA and erm(T) genes. This is to the best of our knowledge the first report of the optrA and erm(T) co-located on an ICE in S. suis. Our results showed a high prevalence of optrA gene in S. suis isolates in China. Further research is needed to evaluate the importance of ICEs, as they horizontally propagate important clinical resistance genes.


Subject(s)
Oxazolidinones , Streptococcus suis , Animals , Swine , Streptococcus suis/genetics , Phylogeny , Prevalence , Drug Resistance, Bacterial/genetics , Anti-Bacterial Agents/pharmacology
14.
Biosens Bioelectron ; 235: 115399, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37210842

ABSTRACT

Noninvasive and accurate detection of liver fibrosis is extremely significant for well-timed intervention and treatment to prevent or reverse its progression. Fluorescence imaging probes hold great potential for imaging of liver fibrosis, but they always encounter the inherent limitation of shallow penetration depth, which compromises their ability of in vivo detection. To overcome this issue, an activatable fluoro-photoacoustic bimodal imaging probe (IP) is herein developed for specific visualization of liver fibrosis. The probe IP is constructed on a near-infrared thioxanthene-hemicyanine dye that is caged with gamma-glutamyl transpeptidase (GGT) responsive substrate and linked with integrin-targeted peptide (cRGD). Such molecular design permits IP to effectively accumulate in the liver fibrosis region through specific recognition of cRGD towards integrin and activate its fluoro-photoacoustic signal after interaction with overexpressed GGT to precisely monitor the liver fibrosis. Thus, our study presents a potential strategy to design dual-target fluoro-photoacoustic imaging probes for noninvasive detection of early-stage liver fibrosis.


Subject(s)
Biosensing Techniques , Photoacoustic Techniques , Photoacoustic Techniques/methods , Molecular Probes/chemistry , Fluorescent Dyes/chemistry , gamma-Glutamyltransferase , Integrins
15.
Adv Mater ; 35(30): e2211485, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37086426

ABSTRACT

Cancer-associated fibroblasts (CAFs) are the major components of the tumor-associated matrix and play an important role in tumor progression and immunosuppression. Therefore, precise theranostics of CAFs are beneficial for CAFs-targeted therapies. However, imaging agents enabling precise theranostics of CAFs have been rarely exploited. To tackle this issue, a molecular pro-theranostic probe (FMP) with activatable fluorescence, photoacoustic (PA) imaging, and photodynamic therapy (PDT) is developed in response to fibroblast activation protein α (FAPα) overexpressed in >90% types of CAFs and some tumor cells. Attributed to efficient activatable phototoxicity toward CAFs and tumor cells, together with activated immunogenic cell death (ICD), complete tumor regression of primary tumors and abscopal effect of distant tumors are observed in a 4T1-tumor-bearing mice model. By integration with PD-L1 checkpoint blockade immunotherapy, enhanced systemic immune responses are evoked to obtain long-lasting tumor suppression of both primary and distant tumors as well as arrest systemic cancer metastasis in living mice.


Subject(s)
Neoplasms , Photochemotherapy , Animals , Mice , Precision Medicine , Cell Line, Tumor , Immunotherapy , Tumor Microenvironment
16.
Anal Chem ; 95(12): 5340-5345, 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-36920345

ABSTRACT

Discriminative detection between D2O and H2O is important for diverse fields but challenging due to their high similarity in chemical and physical properties. Current molecular sensors for D2O detection generally rely on the spectral change of fluorophores with suitable pKa in response to D2O and H2O with slightly different pH acidity. Herein, we report a new and facile D2O sensor by using singlet oxygen (1O2)-relevant afterglow luminescence of chlorin e4 nanoparticles (Ce4-NPs) to achieve distinguishable detection between D2O and H2O. As 1O2 is a key initiator involved in the afterglow luminescence process, it displays a 22-fold longer lifetime in D2O relative to H2O and thereafter generates more dioxetane intermediates after laser irradiation to lead to ultimate afterglow brightness of Ce4-NPs in D2O. In addition, Ce4-NPs are capable of quantitatively detecting the amount of H2O in D2O with a limit of detection (LOD) of 1.45%. Together, this study broadens the utility of afterglow materials and presents a facile strategy for isotopic purity analysis of heavy water.

17.
Angew Chem Int Ed Engl ; 62(7): e202216351, 2023 02 06.
Article in English | MEDLINE | ID: mdl-36512417

ABSTRACT

Fluorescence imaging in the second near-infrared (NIR-II) window holds great promise for in vivo visualization of amyloid-ß (Aß) pathology, which can facilitate characterization and deep understanding of Alzheimer's disease (AD); however, it has been rarely exploited. Herein, we report the development of NIR-II fluorescent reporters with a donor-π-acceptor (D-π-A) architecture for specific detection of Aß plaques in AD-model mice. Among all the designed probes, DMP2 exhibits the highest affinity to Aß fibrils and can specifically activate its NIR-II fluorescence after binding to Aß fibrils via suppressed twisted intramolecular charge transfer (TICT) effect. With suitable lipophilicity for ideal blood-brain barrier (BBB) penetrability and deep-tissue penetration of NIR-II fluorescence, DMP2 possesses specific detection of Aß plaques in in vivo AD-model mice. Thus, this study presents a potential agent for non-invasive imaging of Aß plaques and deep deciphering of AD progression.


Subject(s)
Alzheimer Disease , Fluorescent Dyes , Mice , Animals , Fluorescent Dyes/chemistry , Amyloid beta-Peptides/metabolism , Alzheimer Disease/metabolism , Blood-Brain Barrier/metabolism , Optical Imaging , Plaque, Amyloid/metabolism , Brain/metabolism , Mice, Transgenic
18.
Front Vet Sci ; 9: 986824, 2022.
Article in English | MEDLINE | ID: mdl-36061114

ABSTRACT

Integrative conjugative elements (ICEs) are important carriers for disseminating resistance genes. We have previously reported a novel element ICEHpa1 carrying seven antibiotic resistance genes, which could be self-transmissible relying on the novel T4SS. To identify novel ICEHpa1 variants from 211 strains and novel T4SS encoded in ICEHpa1, and to explore the relationships in these ICEs, four complete sequences of ICEs were identified by WGS analysis and antimicrobial susceptibility testing was determined by broth microdilution. In addition, a comparative analysis of these ICEs was conducted with bioinformatic tools, and the transfer abilities of these ICEs were confirmed by conjugation. Four ICEHpa1 variants ICEGpa1818, ICEGpa1808, ICEGpa1807, and ICEGpa1815 with different resistance gene profiles were characterized, and their hosts showed different resistance spectrums. All ICEs shared the same backbone and were inserted into the tRNALeu site, and all resistance regions were inserted into the same target site between the accessory and integration regions. This study analyzed complete sequences of ICEs from the ICEHpa1 family and identified novel T4SS and insertion element ISGpa2. Diverse resistance genes extensively exist in these ICEs, serving as a reservoir for resistance genes and facilitating their dissemination.

19.
Article in English | MEDLINE | ID: mdl-35682227

ABSTRACT

In this study, the levels of airborne bacteria and fungi were tested in a female dormitory room; the effects of heating, relative humidity and number of occupants on indoor microorganisms were analyzed and the dose rate of exposure to microbes was assessed. The bacterial and fungal concentrations in the room ranged from 100 to several thousand CFU/m3, and the highest counts were observed in the morning (930 ± 1681 CFU/m3). Staphylococcus spp. and Micrococcus spp. were found in the dormitory. When the heating was on, the total bacterial and fungal counts were lower than when there was no heating. Moreover, statistically significant differences were observed for bacterial concentrations during the morning periods between the times when there was no heating and the times when there was heating. The number of occupants had an obvious positive effect on the total bacterial counts. Moreover, RH had no correlation with the airborne fungi in the dormitory, statistically. Furthermore, the highest dose rate from exposure to bacteria and fungi was observed during sleeping hours. The dose rate from exposure to airborne microorganisms in the dormitory was associated with the activity level in the room. These results helped to elucidate the threat of bioaerosols to the health of female occupants and provide guidance for protective measures.


Subject(s)
Air Microbiology , Air Pollution, Indoor , Air Pollution, Indoor/analysis , Bacteria , Environmental Monitoring/methods , Fungi , Housing
20.
Small ; 18(28): e2201334, 2022 07.
Article in English | MEDLINE | ID: mdl-35723177

ABSTRACT

In vivo simultaneous visualization of multiple biomarkers is critical to accurately diagnose disease and decipher fundamental processes at a certain pathological evolution, which however is rarely exploited. Herein, a multimodal activatable imaging probe (P-125 I) is reported with activatable fluoro-photoacoustic and radioactive signal for in vivo imaging of biomarkers (i.e., hepsin and prostate-specific membrane antigen (PSMA)) associated with prostate cancer diagnosis and prognosis. P-125 I contains a near-infrared (NIR) dye that is caged with a hepsin-cleavable peptide sequence and linked with a radiolabeled PSMA-targeted ligand (PSMAL). After systemic administration, P-125 I actively targets the tumor site via specific recognition between PSMA and PSMAL moiety and in-situ generates of activated fluoro-photoacoustic signal after reacting with hepsin to release the free dye (uncaged state). P-125 I achieves precisely early detection of prostate cancer and renal clearance to alleviate toxicity issues. In addition, the accumulated radioactive and activated photoacoustic signal of probe correlates well with the respective expression level of PSMA and hepsin, which provides valuable foreseeability for cancer progression and prognosis. Thus, this study presents a multimodal activatable probe for early detection and in-depth deciphering of prostate cancer.


Subject(s)
Molecular Probes , Prostatic Neoplasms , Biomarkers, Tumor , Diagnostic Imaging/methods , Fluorescent Dyes , Humans , Kidney , Male , Molecular Imaging/methods , Prostatic Neoplasms/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...