Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38620048

ABSTRACT

Sulfurized polyacrylonitrile (SPAN) is a promising cathode material for lithium-sulfur (Li-S) batteries due to its significantly reduced polysulfide (PS) dissolution compared to that of elemental S cathodes. Although conventional carbonate-based electrolytes are stable with SPAN electrodes, they are unstable with Li metal anodes. Recently, localized high-concentration electrolytes (LHCEs) have been developed to improve the stability of Li anodes. Here, we report a new strategy to further improve the performance of Li||SPAN batteries by replacing the conventional solvating solvent 1,2-dimethoxyethane (DME) in LHCEs with a new solvating solvent, 1,2-diethoxyethane (DEE). The new optimal DEE-LHCE exhibits less reactivity against Li2S2, alleviates PS dissolution, forms a better cathode-electrolyte interphase layer on the SPAN cathode, and enhances SPAN structural reversibility even at elevated temperatures (45 °C). Compared to DME-LHCE, DEE-LHCE with the same salt and diluent leads to better performance in Li||SPAN batteries (with 82.9% capacity retention after 300 cycles at 45 °C), preservation of the SPAN cathode structure, and suppression of volume change of the Li metal anode. A similar strategy on tailoring the solvating solvents in LHCEs can also be used in other rechargeable batteries to improve their electrochemical performances.

2.
J Am Chem Soc ; 145(17): 9624-9633, 2023 May 03.
Article in English | MEDLINE | ID: mdl-37071778

ABSTRACT

Sulfurized polyacrylonitrile (SPAN) represents a class of sulfur-bonded polymers, which have shown thousands of stable cycles as a cathode in lithium-sulfur batteries. However, the exact molecular structure and its electrochemical reaction mechanism remain unclear. Most significantly, SPAN shows an over 25% 1st cycle irreversible capacity loss before exhibiting perfect reversibility for subsequent cycles. Here, with a SPAN thin-film platform and an array of analytical tools, we show that the SPAN capacity loss is associated with intramolecular dehydrogenation along with the loss of sulfur. This results in an increase in the aromaticity of the structure, which is corroborated by a >100× increase in electronic conductivity. We also discovered that the conductive carbon additive in the cathode is instrumental in driving the reaction to completion. Based on the proposed mechanism, we have developed a synthesis procedure to eliminate more than 50% of the irreversible capacity loss. Our insights into the reaction mechanism provide a blueprint for the design of high-performance sulfurized polymer cathode materials.

3.
ACS Appl Mater Interfaces ; 13(9): 10837-10844, 2021 Mar 10.
Article in English | MEDLINE | ID: mdl-33620190

ABSTRACT

Electrochemical reduction of CO2 to valuable chemicals or fuels is critical for closing the carbon cycle and preventing further deterioration of the environment. Here, we discover that by adopting the Zn foil as the substrate, a ZnO two-dimensional sheet array is in situ synthesized on the Zn foil by a facile hydrothermal method. The obtained ZnO sheet array/Zn foil exhibited an outstanding CO2 reduction performance to CO, which showed the highest Faraday efficiency of 85% for CO at -2.0 V (vs Ag/AgCl) with a current density of 11.5 mA/cm2 compared with the freestanding ZnO sheets and particles and excellent stability in the 0.1 M KHCO3 electrolyte. The in situ vertical ZnO sheet array exposed with abundant exposed (11̅00) edge facets can accelerate the electron transfer and improve the number of active sites, which leads to the enhanced reduction performance. Alongside, the density functional theory simulation indicated that the vertical-grown ZnO sheet array possesses lower Gibbs free energy for the CO2 activation, with a more exposed (11̅00) edge surface of ZnO.

SELECTION OF CITATIONS
SEARCH DETAIL
...