Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38980811

ABSTRACT

Conventionally obtained silicon quantum dots (Si QDs) generally suffer from the disadvantages of a cumbersome preparation process, large fluctuation in the quality of Si QDs, poor water solubility, and aggregation-caused quenching (ACQ) phenomenon. Here we report a facile one-pot strategy to synthesize a novel Si QDs-based fluorescent nanomaterial in which Si QDs are confined into dendritic mesoporous silica, named as SiQDs@DMSNs. The prepared SiQDs@DMSNs, with adjustable particle sizes ranging from 140 to 300 nm, emit blue fluorescence around 410 nm upon excitation by ultraviolet light at a wavelength of 300 nm. It is found that the addition of sodium salicylate (NaSAL) plays a crucial role in the in situ generation of Si QDs. The obtained SiQDs@DMSNs exhibit excellent fluorescence intensity, water solubility, and stability, facilitating easy surface modification, without being limited by the ACQ phenomenon. It is expected to be widely used in many fields such as biosensors, nanomedicines, in vivo imaging, fingerprint identification, and anticounterfeiting labels.

2.
J Colloid Interface Sci ; 669: 419-429, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38723531

ABSTRACT

As an emerging fluorophore, aggregation-induced emission luminogens (AIEgens) have received widespread attention in recent years, but the inherent drawbacks of AIEgens, such as the poor water-solubility and insufficient fluorescence stability in complex environments, restrict their performance in practical applications. Herein, we report a universal strategy based on hydrophobic dendritic mesoporous silica (HMSN) that can integrate different AIE molecules to construct multi-color fluorescent AIE materials. Specifically, HMSN with central radial pores was used as a powerful carrier for direct loading AIE molecules and restricting their intramolecular motions. Due to the pore-domain restriction effect and hydrophobic interaction, the obtained silica-based AIE materials have bright fluorescence with a maximum quantum yield of 68.38%, high colloidal/fluorescence stability, and excellent biosafety. Further, these silica-based AIE materials can be conjugated with functional antibodies to obtain probes with different targetability. After integration with immunomagnetic beads, the prepared detection probes achieved the quantitative detection of cardiac troponin I with the limit of detection (LOD) of 0.508 ng/mL. Overall, the targeting probes stemming from silica-based AIE materials can not only achieve cell-specific imaging, but quantify the number of Jurkat cells (LOD = 270 cells/mL) to further determine the specific etiology of the disease.


Subject(s)
Fluorescent Dyes , Silicon Dioxide , Silicon Dioxide/chemistry , Humans , Fluorescent Dyes/chemistry , Jurkat Cells , Porosity , Hydrophobic and Hydrophilic Interactions , Surface Properties , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL
...