Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
BMJ Open ; 14(4): e082944, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38626978

ABSTRACT

INTRODUCTION: Perimenopause is a critical transitional period in reproductive ageing. A set of physiological and psychological changes can affect perimenopausal women's quality of life and further threaten their older adult health conditions. In China, less than one-third of midlife women with menopausal symptoms have actively sought professional healthcare. Regarding the public health significance of comprehensive menopause management, the current study aims to investigate the effects of a therapeutic lifestyle modification (TLM) intervention on cardiometabolic health, sexual functioning and health-related quality of life among perimenopausal Chinese women. METHOD AND ANALYSIS: A randomised controlled trial with two parallel arms will be conducted at the gynaecology outpatient department of Yunnan Provincial Hospital of Traditional Chinese Medicine in China. 94 eligible perimenopausal women aged between 40 and 55 years will be recruited for the study. The TLM intervention consists of four elements: menopause-related health education, dietary guidance, pelvic floor muscle training and Bafa Wubu Tai Chi exercise. Participants will be randomly assigned (1:1) to receive either the 12-week TLM intervention or routine care via stratified blocked randomisation. The primary outcome is quality of life; secondary outcomes of interest include sexual functioning and cardiometabolic health. The outcome measures will be assessed at baseline and post-intervention. To explore the effects of the intervention, linear mixed models will be applied to test the changes between the two groups over time in each outcome based on an intention-to-treat analysis. ETHICS AND DISSEMINATION: The Research Ethics Review Committee of Chulalongkorn University (COA No 178/66) and the Medical Ethics Committee of Yunnan Provincial Hospital of Traditional Chinese Medicine (IRB-AF-027-2022/02-02) approved the study protocol. Written informed consent will be obtained from all participants. Results will be published in peer-reviewed journals and disseminated through conferences. TRIAL REGISTRATION NUMBER: ChiCTR2300070648.


Subject(s)
Cardiovascular Diseases , Sexual Health , Humans , Female , Aged , Adult , Middle Aged , Quality of Life , Perimenopause , China , Life Style , Cardiovascular Diseases/prevention & control , Randomized Controlled Trials as Topic
2.
Bioresour Technol ; 397: 130489, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38403170

ABSTRACT

Microalgae are photosynthetic microorganisms with the potential to mitigate the atmospheric greenhouse effect by carbon fixation. However, their growth is typically limited by light availability. A wavelength converter utilizing red, blue, and green quantum dots (QDs) was developed to optimize light quality for enhancing microalgal production. The growth, lipid content, and eicosapentaenoic acid titer of Nannochloropsis increased by 11.2%, 9.5%, and 15.5% with red QDs, respectively. The biomass and triacylglycerol content of Phaeodactylum tricornutum increased by 8.6% and 35.0%, respectively. Simultaneously, biodiesel production was accelerated in Nannochloropsis (20.2%) and P. tricornutum (11.6%), and improved with increased cetane number and reduced iodine value. Furthermore, red QDs increased the growth and biomass accumulation of Nannochloropsis under low light, while green QDs shielded Nannochloropsis from photoinhibition under high light. This customizable QD-based methodology overcomes microalgal light limitations, demonstrating a universally applicable approach to improve microalgal cultivation and biochemical component production.


Subject(s)
Microalgae , Quantum Dots , Stramenopiles , Microalgae/metabolism , Light , Photosynthesis , Triglycerides , Biomass , Biofuels
3.
Article in English | MEDLINE | ID: mdl-37977490

ABSTRACT

Glyceroglycolipids are the primary thylakoid membrane lipids in cyanobacteria. Their diverse bioactivities have led to extensive utilization in the biomedical industry. In this study, we elucidated the role of ERA (E. coli Ras-like protein) in augmenting glyceroglycolipid synthesis and bolstering stress resilience in Synechococcus elongatus PCC 7942 during phosphate starvation. Notably, the ERA overexpression strain (ERA OE) outperformed the wild-type (WT) strain under phosphate-starved conditions, displaying an average 13.9 % increase in biomass over WT during the entire growth period, peaking at 0.185 g L-1 of dry cell weight on day 6. Lipidomic analysis using UHPLC-MS/MS techniques revealed that ERA OE exhibited a higher total glyceroglycolipid content compared to WT under phosphate starvation, representing a 7.95 % increase over WT and constituting a maximum of 5.07 % of dry cell weight on day 6. Transcriptomic analysis identified a significant up-regulation of the gldA gene (encoding glycerol dehydrogenase) involved in glycerolipid metabolism due to overexpression of ERA during phosphate starvation. These findings suggest a potential mechanism by which ERA regulates glyceroglycolipid synthesis through the up-regulation of GldA, thereby enhancing phosphate starvation tolerance in S. elongatus PCC 7942. Furthermore, lipidomic analysis revealed that ERA facilitated the production of glyceroglycolipid molecules containing C16:1 and C18:1 fatty acids. Additionally, ERA redirected lipid flux and promoted glyceroglycolipid accumulation while attenuating triacylglycerol production under phosphate starvation. This study represents the first demonstration of pivotal role of ERA in enhancing glyceroglycolipid synthesis and phosphate starvation tolerance in cyanobacteria, offering new insights into the effective utilization of glyceroglycolipids in various applications.


Subject(s)
Phosphates , Synechococcus , Phosphates/metabolism , Escherichia coli/metabolism , Tandem Mass Spectrometry , Synechococcus/genetics , Synechococcus/metabolism
4.
J Agric Food Chem ; 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37910392

ABSTRACT

The properties and nutritional value of microalgal bioproducts depend significantly on fatty acid desaturation, which is generally modulated by manipulating the culture conditions or associated gene expressions. Here, we investigated the role of CpZF_CCCH1, a non-tandem CCCH-type zinc-finger (non-TZF) protein, in elevating polyunsaturated fatty acid (PUFA) content (11.00-16.36%) in Chlamydomonas reinhardtii. Through lipidomic and flow cytometry analyses, we observed reduced triacylglycerol accumulation (7.01-21.15%) and elevated levels of membrane lipids containing PUFAs (7.81-46.18%) in C. reinhardtii overexpressing CpZF_CCCH1. Additionally, overexpression of nucleus-located CpZF_CCCH1 downregulated genes associated with triacylglycerol assembly and lipid turnover from 2.00- to 2.90-fold, likely by binding to GCN4 motif and promoter of 3-phosphate-glycerol acyltransferase. Furthermore, overexpression of CpZF_CCCH1 alleviated reactive oxygen species levels by 59.28-73.26% and enhanced stress tolerance under adverse conditions. These findings expanded the roles of non-TZF proteins in lipid metabolism, opening new avenues for metabolic engineering to enhance the nutritional value and stress tolerance of microalgae and agricultural crops.

5.
Molecules ; 27(21)2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36364324

ABSTRACT

In this study, Scenedesmus sp. FSP3 was cultured using a two-stage culture strategy for CO2 fixation and lutein production. During the first stage, propylene carbonate was added to the medium, with 5% CO2 introduced to promote the rapid growth and CO2 fixation of the microalgae. During the second stage of cultivation, a NaCl concentration of 156 mmol L-1 and a light intensity of 160 µmol m-2 s-1 were used to stimulate the accumulation of lutein in the microalgal cells. By using this culture method, high lutein production and CO2 fixation were simultaneously achieved. The biomass productivity and carbon fixation rate of Scenedesmus sp. FSP3 reached 0.58 g L-1 d-1 and 1.09 g L-1 d-1, with a lutein content and yield as high as 6.45 mg g-1 and 2.30 mg L-1 d-1, respectively. The results reveal a commercially feasible way to integrate microalgal lutein production with CO2 fixation processes.


Subject(s)
Microalgae , Scenedesmus , Lutein , Carbon Dioxide , Biomass , Salt Stress
6.
Front Plant Sci ; 13: 987354, 2022.
Article in English | MEDLINE | ID: mdl-36247620

ABSTRACT

Nitrogen deprivation induces variations in fatty acid desaturation in microalgae, which determines the performance of biodiesel and the nutritional value of bioproducts. However, the detailed scenario and the underlying regulatory mechanism remain unclear. In this study, we attempt to outline these scenario and mechanisms by performing biochemical, lipidomic, and transcriptomic analyses in Chlorella pyrenoidosa and functional characterization of transcription factors in Yarrowia lipolytica. We found that early nitrogen deprivation dramatically reduced fatty acid desaturation without increasing lipid content. The contents of palmitic acid (16:0) and oleic acid (18:1) dramatically increased to 2.14 and 2.87 times that of nitrogen repletion on the second day, respectively. Lipidomic analysis showed the transfer of polyunsaturated fatty acids from phospholipids and glycolipids to triacylglycerols, and an increase in lipid species with 16:0 or 18:1 under nitrogen deprivation conditions. Upregulated stearoyl-ACP desaturase and oleyl-ACP thioesterase promoted the synthesis of 18:1, but restricted acetyl-CoA supply revealed that it was the intensive lipid turnover instead of an attenuated Kennedy pathway that played an important role in the variation in fatty acid composition under early nitrogen deprivation. Finally, two differentially expressed SQUAMOSA promoter-binding proteins (SBPs) were heterologously expressed in Y. lipolytica, demonstrating their role in promoting the accumulation of total fatty acid and the reduction in fatty acid desaturation. These results revealed the crucial role of lipid turnover and SBPs in determining fatty acid desaturation under early nitrogen deprivation, opening new avenues for the metabolic engineering of fatty acid desaturation in microalgae.

7.
Article in English | MEDLINE | ID: mdl-33981353

ABSTRACT

Intrauterine adhesion (IUA) is a serious complication caused by excessive fibrosis resulting from endometrial repair after trauma. The traditional Chinese medicine Tiaoshen Tongluo recipe (TTR) contains ingredients associated with the alleviation of fibrosis. The transforming growth factor-ß1 (TGF-ß1)/Smad pathway is thought to mediate fibrosis in IUA. In this study, we evaluated the influence of TTR on endometrial fibrosis in a rat model of IUA and in TGF-ß1-stimulated endometrial stromal cells (ESCs). TTR was found to alleviate the level of endometrial fibrosis in a rat model of IUA. A higher number of collagen fibers and greater damage were observed in the endometrial tissue of untreated rats compared to those treated with TTR. The expression of TGF-ß1, Smad2, Smad3, and Smad4 was upregulated following IUA, whereas Smad7 expression was downregulated. TTR lowers the expression of TGF-ß1, Smad2, Smad3, and Smad4 but increases the expression of Smad7 in vivo, indicating that TTR can modulate the expression of the TGF-ß1/Smad pathway to mediate fibrosis. In ESCs, the phosphorylation of Smad2 and Smad3 and upregulation of Smad4 were induced by TGF-ß1 whereas the expression of Smad7 was inhibited. Administration of TTR reduces the phosphorylation of Smad2 and Smad3, increases Smad4 expression induced by TGF-ß1, and promotes the expression of Smad7. TTR modulates the TGF-ß1/Smad pathway to alleviate the generation of fibrotic tissue in response to IUA.

8.
Int J Mol Sci ; 22(5)2021 Feb 27.
Article in English | MEDLINE | ID: mdl-33673599

ABSTRACT

Saline-alkali soil has become an important environmental problem for crop productivity. One of the most effective approaches is to cultivate new stress-tolerant plants through genetic engineering. Through RNA-seq analysis and RT-PCR validation, a novel bZIP transcription factor ChbZIP1, which is significantly upregulated at alkali conditions, was obtained from alkaliphilic microalgae Chlorella sp. BLD. Overexpression of ChbZIP1 in Saccharomyces cerevisiae and Arabidopsis increased their alkali resistance, indicating ChbZIP1 may play important roles in alkali stress response. Through subcellular localization and transcriptional activation activity analyses, we found that ChbZIP1 is a nuclear-localized bZIP TF with transactivation activity to bind with the motif of G-box 2 (TGACGT). Functional analysis found that genes such as GPX1, DOX1, CAT2, and EMB, which contained G-box 2 and were associated with oxidative stress, were significantly upregulated in Arabidopsis with ChbZIP1 overexpression. The antioxidant ability was also enhanced in transgenic Arabidopsis. These results indicate that ChbZIP1 might mediate plant adaptation to alkali stress through the active oxygen detoxification pathway. Thus, ChbZIP1 may contribute to genetically improving plants' tolerance to alkali stress.


Subject(s)
Alkalies/toxicity , Arabidopsis/physiology , Basic-Leucine Zipper Transcription Factors/metabolism , Chlorella/metabolism , Plant Proteins/metabolism , Plants, Genetically Modified/physiology , Stress, Physiological , Adaptation, Physiological/genetics , Arabidopsis/drug effects , Basic-Leucine Zipper Transcription Factors/genetics , Chlorella/genetics , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plants, Genetically Modified/drug effects , Salt-Tolerant Plants/drug effects , Salt-Tolerant Plants/physiology
9.
Chemosphere ; 265: 129046, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33261840

ABSTRACT

Alkaline environments are abundant globally and cause damage to most organisms, while some microalgae can grow well and accumulate lipids under those conditions. Here the mechanisms of alkali resistance and lipid accumulation in the alkaliphilic microalgae Chlorella sp. BLD were explored using physiological-biochemical and transcriptome analysis. When cultivated at alkaline pH, Chlorella sp. BLD exhibited good alkali-resistance ability and increased biomass (0.97 g L-1). The biochemical composition of Chlorella sp. BLD changed significantly (lipid content increased 39% and protein content decreased 19.5%) compared with pH 7.5. Through transcriptome analysis, we found that pathways related to carbon metabolism such as photosynthesis, glycolysis, and the TCA cycle were significantly regulated under alkaline conditions. Genes that encoding the key enzyme in carbon-related metabolism such as Rubisco, AMY, PK, ME, CS, ACAT, KAS, and DGAT were identified. Transcriptional regulation of these genes results in carbon flow switching from starch and protein to cell wall metabolism, organic acid synthetic and lipid accumulation in response to alkaline conditions. These results reveal the alkali resistance mechanism of Chlorella sp. BLD and provide a theoretical basis for microalgae oil production under alkaline conditions.


Subject(s)
Chlorella , Microalgae , Alkalies , Biofuels , Biomass , Carbon , Chlorella/genetics , Gene Expression Profiling , Lipids , Microalgae/genetics
10.
Mar Drugs ; 18(7)2020 Jul 13.
Article in English | MEDLINE | ID: mdl-32668657

ABSTRACT

Glyceroglycolipids, abundant in cyanobacteria's photosynthetic membranes, present bioactivities and pharmacological activities, and can be widely used in the pharmaceutical industry. Environmental factors could alter the contents and compositions of cyanobacteria glyceroglycolipids, but the regulation mechanism remains unclear. Therefore, the glyceroglycolipids contents and the transcriptome in Synechococcus elongatus PCC 7942 were analyzed under phosphate starvation. Under phosphate starvation, the decrease of monogalactosyl diacylglycerol (MGDG) and increases of digalactosyl diacylglycerol (DGDG) and sulfoquinovosyl diacylglycerol (SQDG) led to a decrease in the MGDG/DGDG ratio, from 4:1 to 5:3, after 12 days of cultivation. However, UDP-sulfoquinovose synthase gene sqdB, and the SQDG synthase gene sqdX, were down-regulated, and the decreased MGDG/DGDG ratio was later increased back to 2:1 after 15 days of cultivation, suggesting the regulation of glyceroglycolipids on day 12 was based on the MGDG/DGDG ratio maintaining glyceroglycolipid homeostasis. There are 12 differentially expressed transcriptional regulators that could be potential candidates related to glyceroglycolipid regulation, according to the transcriptome analysis. The transcriptome analysis also suggested post-transcriptional or post-translational regulations in glyceroglycolipid synthesis. This study provides further insights into glyceroglycolipid metabolism, as well as the scientific basis for glyceroglycolipid synthesis optimization and cyanobacteria glyceroglycolipids utilization via metabolic engineering.


Subject(s)
Glycolipids/metabolism , Lipid Metabolism/genetics , Synechococcus/genetics , Synechococcus/metabolism , Transcriptome , Gene Expression Profiling , Gene Expression Regulation, Bacterial , Gene Regulatory Networks , Phosphates/deficiency , Time Factors
11.
Biochem Biophys Res Commun ; 522(3): 662-668, 2020 02 12.
Article in English | MEDLINE | ID: mdl-31787233

ABSTRACT

Cyanobacterial monoglucosyldiacylglycerol (MGlcDG) not only serves as a precursor for monogalactosyldiacylglycerol (MGDG) synthesis, but also participates in stress acclimation. Two genes (mgdA and mgdE) related to MGDG synthesis of Synechococcus sp. PCC 7942 were identified. The mgdE-suppressed mutant (AE) accumulated MGlcDG (4.2%) and showed better growth and photosynthetic activities compared with WT and other mutants (mgdA/mgdE-overexpressed and mgdA-suppressed strains), which suggested that MGlcDG was involved in phosphate stress adaptation for Synechococcus sp. PCC 7942. A notable increase in contents of 18:1 fatty acid (FA) of MGDG (127%), DGDG (68%), and SQDG (105%) in AE were found under phosphate starvation. However, the expression of △9 desaturase (desC) was not higher in AE than that in WT during phosphate-starved period. These results suggested that MGlcDG might be involved in the process of FA desaturation, which contributed to membrane fluidity and cell basic metabolism for stress acclimation in cyanobacteria. In complementary experiments of E. coli, although the expression of mgdA and desC in the mgdA and desC coexpressed strain (OEAC) reduced by 22% and 35% compared with that of the strains only overexpressing mgdA (OEA) or desC (OEC), the content of unsaturated FA in OEAC was the highest. This further implied that the accumulation of MGlcDG could prompt FA desaturation in E. coli. Therefore, we propose that an overproduction of MGlcDG is responsible for FA desaturation and participates in phosphate stress adaptation in cyanobacteria.


Subject(s)
Galactolipids/metabolism , Phosphates/metabolism , Synechococcus/physiology , Adaptation, Physiological , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Galactolipids/genetics , Genes, Bacterial , Stress, Physiological , Synechococcus/genetics
12.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1864(12): 158522, 2019 12.
Article in English | MEDLINE | ID: mdl-31487556

ABSTRACT

Organisms use various adaptive strategies against phosphate stress, including lipid remodeling. Here, the response of major membrane lipids to phosphate stress was analyzed in Synechococcus sp. PCC 7942. Unlike plants and eukaryotic microalgae, no significant increases in neutral lipids were found, whereas glycolipids content increased to as high as 6.13% (of dry cell weight, DCW) and phospholipids decreased to 0.34% (of DCW) after 16 days of cultivation without phosphate. Glycolipids accumulation were mainly attributed to the significant increase of digalactosyldiacylglycerol (DGDG) by 50% and sulfoquinovosyldiaclglycerol (SQDG) by 90%, both of which acted as complementary lipids for phosphatidylglycerol (PG) in the cyanobacterial membrane. Also, a notable increase in content (by 48%) of C18 fatty acids (especially C18:1) was observed in all glycolipids at the expense of C12 and C14 (72%). These changes may contribute to membrane fluidity and photosynthetic activity for basic cell metabolism and phosphate stress adaptation. Lipidomic analyses showed the reduction of PG 18:1/16: 0 (by 52%) with the increase of DGDG 18:1/16:0 (133%) and SQDG 18:1/16:0 (245%), strongly suggesting a direct conversion of PG to DGDG and SQDG. Moreover, the decreasing amount of monogalactosyldiacylglycerol (MGDG) 16:1/16:0 (22%) was consistent with the increase of free fatty acids (125%) on day 2 of phosphate absence, which suggested that MGDG is more likely to provide a pool of fatty acids for de novo synthesis of glycolipids. This study provides valuable insight into cyanobacteria adaptation strategies to phosphate stress by membrane lipid remodeling and unveils the underlying acyl chain fluxes into glycolipids.


Subject(s)
Glycolipids/metabolism , Membrane Lipids/metabolism , Phosphates/metabolism , Synechococcus/metabolism , Galactolipids/metabolism , Lipidomics , Phosphatidylglycerols/metabolism
13.
Plant Physiol ; 181(2): 510-526, 2019 10.
Article in English | MEDLINE | ID: mdl-31341003

ABSTRACT

Microalgae are known to respond to salinity stress via mechanisms that include accumulation of compatible solutes and synthesis of antioxidants. Here, we describe a salinity-tolerance mechanism mediated by lipid droplets (LDs). In the alga Parachlorella kessleri grown under salt-stress conditions, we observed significant increases in cell size and LD content. LDs that were closely grouped along the plasma membrane shrank as the plasma membrane expanded, and some LDs were engulfed by vacuoles. Transcriptome analysis showed that genes encoding lysophospholipid acyltransferases (LPLATs) and phospholipase A2 were significantly up-regulated following salt stress. Diacylglycerol kinase and LPLAT were identified in the proteome of salt-induced LDs, alongside vesicle trafficking and plastidial proteins and histone H2B. Analysis of fatty acid composition revealed an enrichment of C18:1 and C18:2 at the expense of C18:3 in response to salt stress. Pulse-chase experiments further suggested that variations of fatty acid composition were associated with LDs. Acetate stimulation research further confirmed a positive role of LDs in cell growth under salt stress. These results suggest that LDs play important roles in salt-stress tolerance, through harboring proteins, participating in cytoplasmic component recycling, and providing materials and enzymes for membrane modification and expansion.


Subject(s)
Chlorophyta/physiology , Lipid Droplets/physiology , Microalgae/physiology , Salt Tolerance , Chlorophyta/ultrastructure , Fatty Acids/metabolism , Microalgae/ultrastructure , Transcriptome
14.
Bioresour Technol ; 288: 121606, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31178260

ABSTRACT

Haematococcus pluvialis is one of the most abundant sources of natural astaxanthin as compared to others microorganism. Therefore, it is important to understand the biorefinery of astaxanthin from H. pluvialis, starting from the cultivation stage to the downstream processing of astaxanthin. The present review begins with an introduction of cellular morphologies and life cycle of H. pluvialis from green vegetative motile stage to red non-motile haematocyst stage. Subsequently, the conventional biorefinery methods (e.g., mechanical disruption, solvent extraction, direct extraction using vegetable oils, and enhanced solvent extraction) and recent advanced biorefinery techniques (e.g., supercritical CO2 extraction, magnetic-assisted extraction, ionic liquids extraction, and supramolecular solvent extraction) were presented and evaluated. Moreover, future prospect and challenges were highlighted to provide a useful guide for future development of biorefinery of astaxanthin from H. pluvialis. The review aims to serve as a present knowledge for researchers dealing with the bioproduction of astaxanthin from H. pluvialis.


Subject(s)
Ionic Liquids , Xanthophylls , Chlorophyceae , Plant Oils
15.
Mar Drugs ; 17(5)2019 Apr 28.
Article in English | MEDLINE | ID: mdl-31035409

ABSTRACT

Short chain fatty acids (SCFAs) are valued as a functional material in cosmetics. Cyanobacteria can accumulate SCFAs under some conditions, the related mechanism is unclear. Two potential genes Synpcc7942_0537 (fabB/F) and Synpcc7942_1455 (fabH) in Synechococcus sp. PCC 7942 have homology with fabB/F and fabH encoding ß-ketoacyl ACP synthases (I/II/III) in plants. Therefore, effects of culture time and cerulenin on SCFAs accumulation, expression levels and functions of these two potential genes were studied. The results showed Synechococcus sp. PCC 7942 accumulated high SCFAs (C12 + C14) in early growth stage (day 4) and at 7.5g/L cerulenin concentration, reaching to 2.44% and 2.84% of the total fatty acids respectively, where fabB/F expression was down-regulated. Fatty acid composition analysis showed C14 increased by 65.19% and 130% respectively, when fabB/F and fabH were antisense expressed. C14 increased by 10.79% (fab(B/F)-) and 6.47% (fabH-) under mutation conditions, while C8 increased by six times in fab(B/F)- mutant strain. These results suggested fabB/F is involved in fatty acid elongation (C <18) and the elongation of cis-16:1 to cis-18:1 fatty acid in Synechococcus sp. PCC 7942, while fabH was involved in elongation of fatty acid synthesis, which were further confirmed in complementary experiments of E. coli. The research could provide the scientific basis for the breeding of SCFA-rich microalgae species.


Subject(s)
Fatty Acids, Volatile/biosynthesis , Microalgae/metabolism , Synechococcus/metabolism , 3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/genetics , 3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cosmetics/chemistry , Metabolic Networks and Pathways/genetics , Microalgae/genetics , Sequence Homology, Amino Acid , Synechococcus/genetics
16.
Bioresour Technol ; 285: 121332, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30999194

ABSTRACT

The aim of this work was to study salt stress effects on DNA content and oil production processes integrating harvesting, lipid accumulation and oil extraction. Salt-induced enlargement of Parachlorella kessleri cells, with increasing content of DNA and neutral lipid were found. The 34.77% neutral lipid content and biomass concentration of 0.83 g L-1 were obtained after 7 days of salt treatment, compared with that of 13.57% and 0.89 g L-1 cultivated under normal condition. Sedimentation efficiency increased markedly from 15% to 90% due to the cell enlargement. Disruption fraction and the recovery rate of total lipids of wet cells under salt stress were significantly higher than that of normal conditions (100% and 82.4% for salt stress vs.76.8% and 51.1% for normal conditions). This work demonstrated that salt-induced increase in cell size and DNA content was an effective strategy for the enhancement of oil production, microalgae harvesting and oil extraction.


Subject(s)
Chlorophyta , Microalgae , Biomass , Lipids , Ploidies
17.
R Soc Open Sci ; 5(11): 181236, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30564413

ABSTRACT

Microalgae are promising feedstocks for biodiesel, where the high proportion of monounsaturated fatty acid such as oleic acid (C18:1) is preferred. To regulate fatty acid desaturation in microalgae, the relationship among nitrate concentration, fatty acid composition and the expression levels of desaturase genes was explored. Dynamic variations of fatty acid profiles suggested nitrate could induce desaturation of C18 fatty acids. The content of C18:1 in Auxenochlorella pyrenoidosa was 30.88% at 0 g l-1 nitrate concentration compared with 0.48% at 1.5 g l-1. The expressions of relative delta-9, 12 and 15 fatty acid desaturase genes (Δ9, Δ12 and Δ15FADs) were further investigated. The 330% upregulated expression of Δ9FAD in logarithmic phase at 0 g l-1 resulted in C18:1 accumulation. Moreover, nitrate replenishment caused a sharp reduction of C18:1 from 34.79% to 0.22% and downregulation of Δ9FAD expression to 1% of the nitrate absence level, indicating the pivotal role of Δ9FAD in C18:1 accumulation. Finally, overexpression of Δ9FAD in Escherichia coli and Saccharomyces cerevisiae resulted in an increase of C18:1, confirming its ability of desaturating C18:0. The results could provide a new approach and scientific guidance for the improvement of biodiesel quality and industrialization of high-valued chemicals by means of metabolic engineering.

18.
Bioresour Technol ; 227: 214-220, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28038398

ABSTRACT

Switching cultivation (mixotrophic-heterotrophic, 12h:12h) of Heynigia riparia SX01 was studied, the maximum biomass concentration of 3.55gL-1 and lipid yield of 1.45gL-1 were achieved after 8days cultivation. The extracellular polymeric substance (EPS) was developed as co-product. Addition of MgSO4 could enhance the production of EPS. The highest amount of 0.60gL-1 EPS was obtained with the addition of 2gL-1 MgSO4, the self-flocculation efficiency was as high as 83% at this condition. The total lipid and lipid fractions did not show differences with extra MgSO4. Based on the above results, a new biodiesel production model was proposed: culturing Heynigia riparia SX01 with extra 2gL-1 MgSO4 by switching cultivation and using self flocculation to collect microalgae for biodiesel production, while EPS was collected as valuable co-products.


Subject(s)
Biomass , Cell Culture Techniques/methods , Chlorophyta/metabolism , Extracellular Space/chemistry , Lipids/biosynthesis , Polymers/metabolism , Biofuels/microbiology , Chlorophyta/drug effects , Fatty Acids/metabolism , Glucose/pharmacology , Magnesium Sulfate/pharmacology , Microalgae/drug effects , Microalgae/metabolism , Monosaccharides/analysis , Spectroscopy, Fourier Transform Infrared
19.
Sci Rep ; 6: 30145, 2016 07 21.
Article in English | MEDLINE | ID: mdl-27440670

ABSTRACT

Glycolipids had received increasing attention because of their uses in various industries like cosmetics, pharmaceuticals, food and machinery manufacture. Microalgae were competitive organisms to accumulate metabolic substance. However, using microalgae to produce glycolipid was rare at present. In this study, glycolipid content of Chlorella pyrenoidosa and Synechococcus sp. under different nitrate and hydrophosphate levels were investigated. The highest glycolipid contents of 24.61% for C. pyrenoidosa and 15.37% for Synechococcus sp. were obtained at nitrate absence, which were 17.19% for C. pyrenoidosa and 10.99% for Synechococcus sp. at 0.01 and 0 g L(-1) hydrophosphate, respectively. Glycolipid productivities of two microalgae could reach at more than 10.59 mg L(-1) d(-1). Nitrate absence induced at least 8.5% increase in MGDG, DGDG and SQDG, while hydrophosphate absence resulted in over 21.2% increase in DGDG and over 48.4% increase in SQDG and more than 22.2% decrease in MGDG in two microalgae. Simultaneous nitrate and hydrophosphate limitation could make further improvement of glycolipid accumulation, which was more than 25% for C. pyrenoidosa and 21% for Synechococcus sp. These results suggest that nitrogen and phosphorus limitation or starvation should be an efficient way to improve microalgal glycolipid accumulation.


Subject(s)
Glycolipids/metabolism , Microalgae/metabolism , Nitrogen/metabolism , Phosphates/metabolism , Biomass
20.
Bioresour Technol ; 205: 126-32, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26826572

ABSTRACT

Effects of white light-emitting diodes (LEDs) with different light intensities at photoperiod of 18:6h on Chlorella pyrenoidosa growth were investigated. The microalgae exhibited the highest growth rate 89.0mgL(-1)d(-1) and growth efficiency 97.8mgL(-1)KWh(-1) at 110 and 90µmolm(-2)s(-1), respectively. Based on the discovery of this asynchronous phenomenon between growth rate and growth efficiency, influences of LEDs (red, blue and white) under capped daily energy consumption (0.80KWh d(-1)) with combinations of electric power (33.3, 44.4 and 66.6w) and photoperiod (24:0, 18:6 and 12:12h) were further investigated. The highest growth efficiency 106.4mgL(-1)KWh(-1) and growth rate 85.1mgL(-1)d(-1) were both obtained under white-33.3w-24h. Growth efficiency and growth rate were simultaneously improved 1.1 times through this method above. The order of growth efficiency under different LEDs were white>blue>red.


Subject(s)
Biotechnology/instrumentation , Chlorella/physiology , Photoperiod , Biotechnology/methods , Chlorella/growth & development , Electricity , Light , Microalgae/growth & development , Microalgae/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...