Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(14)2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37514693

ABSTRACT

The casting process involves pouring molten metal into a mold cavity. Currently, traditional object detection algorithms exhibit a low accuracy and are rarely used. An object detection model based on deep learning requires a large amount of memory and poses challenges in the deployment and resource allocation for resource limited pouring robots. To address the accurate identification and localization of pouring holes with limited resources, this paper designs a lightweight pouring robot hole detection algorithm named LPO-YOLOv5s, based on YOLOv5s. First, the MobileNetv3 network is introduced as a feature extraction network, to reduce model complexity and the number of parameters. Second, a depthwise separable information fusion module (DSIFM) is designed, and a lightweight operator called CARAFE is employed for feature upsampling, to enhance the feature extraction capability of the network. Finally, a dynamic head (DyHead) is adopted during the network prediction stage, to improve the detection performance. Extensive experiments were conducted on a pouring hole dataset, to evaluate the proposed method. Compared to YOLOv5s, our LPO-YOLOv5s algorithm reduces the parameter size by 45% and decreases computational costs by 55%, while sacrificing only 0.1% of mean average precision (mAP). The model size is only 7.74 MB, fulfilling the deployment requirements for pouring robots.

2.
Metabolites ; 13(4)2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37110225

ABSTRACT

Fatal intoxication with sedative-hypnotic drugs is increasing yearly. However, the plasma drug concentration data for fatal intoxication involving these substances are not systematic and even overlap with the intoxication group. Therefore, developing a more precise and trustworthy approach to determining the cause of death is necessary. This study analyzed mice plasma and brainstem samples using the liquid chromatography-high resolution tandem mass spectrometry (LC-HR MS/MS)-based metabolomics method to create discriminative classification models for estazolam fatal intoxication (EFI). The most perturbed metabolic pathway between the EFI and EIND (estazolam intoxication non-death) was examined, Both EIND and EFI groups were administered 500 mg of estazolam per 100 g of body weight. Mice that did not die beyond 8 hours were treated with cervical dislocation and were classified into the EIND groups; the lysine degradation pathway was verified by qPCR (Quantitative Polymerase Chain Reaction), metabolite quantitative and TEM (transmission electron microscopy) analysis. Non-targeted metabolomics analysis with EFI were the experimental group and four hypoxia-related non-drug-related deaths (NDRDs) were the control group. Mass spectrometry data were analyzed with Compound Discoverer (CD) 3.1 software and multivariate statistical analyses were performed using the online software MetaboAnalyst 5.0. After a series of analyses, the results showed the discriminative classification model in plasma was composed of three endogenous metabolites: phenylacetylglycine, creatine and indole-3-lactic acid, and in the brainstem was composed of palmitic acid, creatine, and indole-3-lactic acid. The specificity validation results showed that both classification models distinguished between the other four sedatives-hypnotics, with an area under ROC curve (AUC) of 0.991, and the classification models had an extremely high specificity. When comparing different doses of estazolam, the AUC value of each group was larger than 0.80, and the sensitivity was also high. Moreover, the stability results showed that the AUC value was equal to or very close to 1 in plasma samples stored at 4 °C for 0, 1, 5, 10 and 15 days; the predictive power of the classification model was stable within 15 days. The results of lysine degradation pathway validation revealed that the EFI group had the highest lysine and saccharopine concentrations (mean (ng/mg) = 1.089 and 1.2526, respectively) when compared to the EIND and control group, while the relative expression of SDH (saccharopine dehydrogenase) showed significantly lower in the EFI group (mean = 1.206). Both of these results were statistically significant. Furthermore, TEM analysis showed that the EFI group had the more severely damaged mitochondria. This work gives fresh insights into the toxicological processes of estazolam and a new method for identifying EFI-related causes of mortality.

3.
Metabolites ; 12(12)2022 Nov 27.
Article in English | MEDLINE | ID: mdl-36557223

ABSTRACT

Diagnosing the cause of fatal intoxication by antipsychotic agents is an important task in forensic practice. In the 2020 Annual Report of the American Association of Poison Control Centers, among 40 deaths caused by antipsychotics, 21 cases were diagnosed as "probably responsible", thereby indicating that more objective diagnostic tools are needed. We used liquid chromatography-mass spectrometry-based integrated metabolomics analysis to measure changes in metabolic profiles in the plasma of mice that died from fatal intoxication due to chlorpromazine (CPZ) or olanzapine (OLA). These results were used to construct a stable discriminative classification model (DCM) comprising L-acetylcarnitine, succinic acid, and propionylcarnitine between fatal intoxication caused by CPZ/OLA and cervical dislocation (control). Performance evaluation of the classification model in mice that suffered fatal intoxication showed relative specificity for different pharmacodynamic drugs and relative sensitivity in different life states (normal, intoxication, fatal intoxication). A stable level of L-acetylcarnitine and variable levels of succinic acid and propionylcarnitine between fatal-intoxication and intoxication groups revealed procedural perturbations in metabolic pathways related to fatal intoxication by CPZ/OLA. Additional stability studies revealed that decomposition of succinic acid in fatal-intoxication samples (especially in the OLA group) could weaken the prediction performance of the binary-classification model; however, levels of these three potential metabolites measured within 6 days in fresh samples kept at 4 °C revealed a good performance of our model. Our findings suggest that metabolomics analysis can be used to explore metabolic alterations during fatal intoxication due to use of antipsychotic agents and provide evidence for the cause of death.

SELECTION OF CITATIONS
SEARCH DETAIL
...