Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Cancer ; 24(1): 857, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39026221

ABSTRACT

BACKGROUND: Many long noncoding RNAs (lncRNAs) with altered expression significantly influence colorectal cancer (CRC) progression and behavior. The functions of many lncRNAs in CRC are not clear yet. This study aimed to discover novel lncRNA entities and comprehensively examine and validate their roles and underlying molecular mechanisms in CRC. METHODS: Tissue samples, both tumourous and non-tumourous, from three CRC patients were submitted for sequencing. Following expression validation in samples from ten patients and four CRC cell lines. The lncRNA KCNMA1-AS2 was synthesized by In-vitro transcription RNA synthesis and the lncRNA was directly transfected into CRC cell lines to overexpress. Functional assays including MTT proliferation assay, Annexin-V/propidium iodide apoptosis assay, wound healing migration assay and cell cycle assays were performed to evaluate the effect of overexpression of KCNMA1-AS2. Furthermore, the binding of KCNMA1-AS2 to miR-1227-5p was confirmed using dual luciferase reporter assays and qPCR analyses. Subsequent bioinformatics analyses identified 58 potential downstream targets of miR-1227-5p across three databases. RESULTS: In this study, we identified the lncRNA KCNMA1-AS2, the expression of which was down-regulated consistently in cancer tissues and CRC cell lines compared to non-cancerous tissues. The overexpression of lncRNA KCNMA1-AS2 led to significant reduction in CRC cell proliferation and migration, increase in cell apoptosis, and more cells arrested in S phase. Additionally, the interaction between KCNMA1-AS2 and miR-1227-5p was confirmed through dual luciferase reporter assay and qPCR analysis. It is also putatively predicted that MTHFR and ST8SIA2 may be linked to CRC based on bioinformatics analyses. CONCLUSIONS: LncRNA KCNMA1-AS2 exhibited distinct gene expression patterns in both CRC tissue and cell lines, impacting various cellular functions while also acting as a sponge for miR-1227-5p.The findings spotlight lncRNA KCNMA1-AS2 as a potential marker for diagnosis and treatment of CRC.


Subject(s)
Apoptosis , Cell Movement , Cell Proliferation , Colorectal Neoplasms , Gene Expression Regulation, Neoplastic , MicroRNAs , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Proliferation/genetics , Apoptosis/genetics , Cell Movement/genetics , Cell Line, Tumor , Female , Male , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/genetics , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/metabolism , Middle Aged
2.
Int J Mol Sci ; 25(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39000184

ABSTRACT

Microglia migrate to the cerebral cortex during early embryonic stages. However, the precise mechanisms underlying microglia migration remain incompletely understood. As an extracellular matrix protein, Netrin-1 is involved in modulating the motility of diverse cells. In this paper, we found that Netrin-1 promoted microglial BV2 cell migration in vitro. Mechanism studies indicated that the activation of GSK3ß activity contributed to Netrin-1-mediated microglia migration. Furthermore, Integrin α6/ß1 might be the relevant receptor. Single-cell data analysis revealed the higher expression of Integrin α6 subunit and ß1 subunit in microglia in comparison with classical receptors, including Dcc, Neo1, Unc5a, Unc5b, Unc5c, Unc5d, and Dscam. Microscale thermophoresis (MST) measurement confirmed the high binding affinity between Integrin α6/ß1 and Netrin-1. Importantly, activation of Integrin α6/ß1 with IKVAV peptides mirrored the microglia migration and GSK3 activation induced by Netrin-1. Finally, conditional knockout (CKO) of Netrin-1 in radial glial cells and their progeny led to a reduction in microglia population in the cerebral cortex at early developmental stages. Together, our findings highlight the role of Netrin-1 in microglia migration and underscore its therapeutic potential in microglia-related brain diseases.


Subject(s)
Cell Movement , Microglia , Netrin-1 , Netrin-1/metabolism , Netrin-1/genetics , Microglia/metabolism , Animals , Mice , Mice, Knockout , Cerebral Cortex/metabolism , Cerebral Cortex/cytology , Glycogen Synthase Kinase 3 beta/metabolism , Glycogen Synthase Kinase 3 beta/genetics , Cell Line , Integrin beta1/metabolism , Integrin beta1/genetics
3.
3 Biotech ; 11(9): 423, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34603923

ABSTRACT

Long noncoding RNAs (lncRNAs) are implicated in various biological processes, such as cell proliferation, differentiation, apoptosis, migration, and invasion. They are also key players in various biological pathways. LncRNA was considered as 'translational noise' before 1980s. It has been reported that lncRNAs are aberrantly expressed in different cancers, either as oncogene or tumor suppressor gene. Therefore, more and more lncRNAs are recognized as potential diagnostic biomarkers and/or therapeutic targets. As competitive endogenous RNA, lncRNAs can interact with microRNA to alter the expression of target genes, which may have extensive clinical implications in cancers, including diagnosis, treatment, prognosis, and chemoresistance. This review comprehensively summarizes the functions and clinical relevance of lncRNAs in digestive system cancers, especially as a potential tool to overcome chemoresistance.

SELECTION OF CITATIONS
SEARCH DETAIL
...