Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Gut ; 73(5): 810-824, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38176898

ABSTRACT

OBJECTIVE: Liver fibrosis is a prelude to a host of end-stage liver diseases. Hepatic stellate cells (HSCs), switching from a quiescent state to myofibroblasts, are the major source for excessive production of extracellular matrix proteins. In the present study, we investigated the role of Suv39h1, a lysine methyltransferase, in HSC-myofibroblast transition and the implication in liver fibrosis. DESIGN: HSC-specific or myofibroblast-specific Suv39h1 deletion was achieved by crossbreeding the Suv39h1 f/f mice to the Lrat-Cre mice or the Postn-CreERT2 mice. Liver fibrosis was induced by CCl4 injection or bile duct ligation. RESULTS: We report that Suv39h1 expression was universally upregulated during HSC-myofibroblast transition in different cell and animal models of liver fibrosis and in human cirrhotic liver tissues. Consistently, Suv39h1 knockdown blocked HSC-myofibroblast transition in vitro. HSC-specific or myofibroblast-specific deletion of Suv39h1 ameliorated liver fibrosis in mice. More importantly, Suv39h1 inhibition by a small-molecule compound chaetocin dampened HSC-myofibroblast transition in cell culture and mitigated liver fibrosis in mice. Mechanistically, Suv39h1 bound to the promoter of heme oxygenase 1 (HMOX1) and repressed HMOX1 transcription. HMOX1 depletion blunted the effects of Suv39h1 inhibition on HSC-myofibroblast transition in vitro and liver fibrosis in vivo. Transcriptomic analysis revealed that HMOX1 might contribute to HSC-myofibroblast transition by modulating retinol homeostasis. Finally, myofibroblast-specific HMOX1 overexpression attenuated liver fibrosis in both a preventive scheme and a therapeutic scheme. CONCLUSIONS: Our data demonstrate a previously unrecognised role for Suv39h1 in liver fibrosis and offer proof-of-concept of its targetability in the intervention of cirrhosis.


Subject(s)
Hepatic Stellate Cells , Liver Cirrhosis , Humans , Mice , Animals , Hepatic Stellate Cells/metabolism , Liver Cirrhosis/pathology , Liver/metabolism , Myofibroblasts
2.
Acta Pharm Sin B ; 14(1): 256-272, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38261867

ABSTRACT

Liver regeneration following injury aids the restoration of liver mass and the recovery of liver function. In the present study we investigated the contribution of megakaryocytic leukemia 1 (MKL1), a transcriptional modulator, to liver regeneration. We report that both MKL1 expression and its nuclear translocation correlated with hepatocyte proliferation in cell and animal models of liver regeneration and in liver failure patients. Mice with MKL1 deletion exhibited defective regenerative response in the liver. Transcriptomic analysis revealed that MKL1 interacted with E2F1 to program pro-regenerative transcription. MAPKAPK2 mediated phosphorylation primed MKL1 for its interaction with E2F1. Of interest, phospholipase d2 promoted MKL1 nuclear accumulation and liver regeneration by catalyzing production of phosphatidic acid (PA). PA administration stimulated hepatocyte proliferation and enhanced survival in a MKL1-dependent manner in a pre-clinical model of liver failure. Finally, PA levels was detected to be positively correlated with expression of pro-regenerative genes and inversely correlated with liver injury in liver failure patients. In conclusion, our data reveal a novel mechanism whereby MKL1 contributes to liver regeneration. Screening for small-molecule compounds boosting MKL1 activity may be considered as a reasonable approach to treat acute liver failure.

3.
Cell Death Dis ; 14(12): 826, 2023 12 14.
Article in English | MEDLINE | ID: mdl-38092723

ABSTRACT

Excessive fibrogenic response in the liver disrupts normal hepatic anatomy and function heralding such end-stage liver diseases as hepatocellular carcinoma and cirrhosis. Myofibroblasts, derived primarily from hepatic stellate cells (HSCs), are the effector of liver fibrosis. In the present study we investigated the mechanism by which Brahma-related gene 1 (BRG1, encoded by Smarca4) regulates HSC-myofibroblast transition and the implication in intervention against liver fibrosis. We report that BRG1 expression was elevated during HSC maturation in cell culture, in animal models, and in human cirrhotic liver biopsy specimens. HSC-specific deletion of BRG1 attenuated liver fibrosis in several different animal models. In addition, BRG1 ablation in myofibroblasts ameliorated liver fibrosis. RNA-seq identified IGFBP5 as a novel target for BRG1. Over-expression of IGFBP5 partially rescued the deficiency in myofibroblast activation when BRG1 was depleted. On the contrary, IGFBP5 knockdown suppressed HSC-myofibroblast transition in vitro and mollified liver fibrosis in mice. Mechanistically, IGFBP5 interacted with Bat3 to stabilize the Bat3-TßR complex and sustain TGF-ß signaling. In conclusion, our data provide compelling evidence that BRG1 is a pivotal regulator of liver fibrosis by programming HSC-myofibroblast transition.


Subject(s)
Liver Neoplasms , Myofibroblasts , Animals , Humans , Mice , Cells, Cultured , Chromatin Assembly and Disassembly , Hepatic Stellate Cells/metabolism , Liver/metabolism , Liver Cirrhosis/pathology , Liver Neoplasms/pathology , Myofibroblasts/metabolism
4.
JHEP Rep ; 5(9): 100805, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37555008

ABSTRACT

Background & Aims: Non-alcoholic fatty liver disease (NAFLD) is characterised by accelerated lipid deposition, aberrant inflammation, and excessive extracellular matrix production in the liver. Short of effective intervention, NAFLD can progress to cirrhosis and hepatocellular carcinoma. In the present study we investigated the involvement of the C-C motif ligand 11 (CCL11) in NAFLD pathogenesis. Methods: NAFLD was induced by feeding mice with a high-fat high-carbohydrate diet. CCL11 targeting was achieved by genetic deletion or pharmaceutical inhibition. The transcriptome was analysed using RNA-seq. Results: We report that CCL11 expression was activated at the transcription level by free fatty acids (palmitate) in hepatocytes. CCL11 knockdown attenuated whereas CCL11 treatment directly promoted production of pro-inflammatory/pro-lipogenic mediators in hepatocytes. Compared with wild-type littermates, CCL11 knockout mice displayed an ameliorated phenotype of NAFLD when fed a high-fat high-carbohydrate diet as evidenced by decelerated body weight gain, improved insulin sensitivity, dampened lipid accumulation, reduced immune cell infiltration, and weakened liver fibrosis. RNA-seq revealed that interferon regulatory factor 1 as a mediator of CCL11 induced changes in hepatocytes. Importantly, CCL11 neutralisation or antagonism mitigated NAFLD pathogenesis in mice. Finally, a positive correlation between CCL11 expression and NAFLD parameters was identified in human patients. Conclusions: Our data suggest that CCL11 is a novel regulator of NAFLD and can be effectively targeted for NAFLD intervention. Impact and implications: Non-alcoholic fatty liver disease (NAFLD) precedes cirrhosis and hepatocellular carcinoma. In this paper we describe the regulatory role of CCL11, a C-C motif ligand chemokine, in NAFLD pathogenesis. Our data provide novel insights and translational potential for NAFLD intervention.

5.
Life Sci ; 329: 121967, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37487274

ABSTRACT

AIMS: Hepatocytes resume proliferation following liver injuries to compensate for the loss of liver mass. Robust liver regeneration is an intrinsic and pivotal process that facilitates restoration of liver anatomy and function. In the present study we investigated the role of ubiquitin-specific peptidase 47 (USP47) in liver regeneration. METHODS AND MATERIALS: Proliferation of hepatocytes was evaluated by Ki67 staining in vivo and EdU incorporation in vitro. DNA-protein interaction was evaluated by chromatin immunoprecipitation (ChIP). RESULTS: USP47 expression was up-regulated in hepatocytes isolated from mice subjected to partial hepatectomy (PHx) or exposed to HGF treatment. Ingenuity pathway analysis revealed E2F1 as a primary regulator of USP47 transcription. Reporter assay and ChIP assay confirmed that E2F1 directly bound to the USP47 promoter and activated USP47 transcription. Consistently, E2F1 knockdown abrogated USP47 induction by HGF. Compared to the wild type littermates, USP47 knockout mice displayed compromised liver regeneration following PHx. In addition, USP47 inhibition by a small-molecule compound impaired liver regeneration in mice. On the contrary, USP47 over-expression enhanced proliferation of hepatocytes in vitro and promoted liver regeneration in mice. Importantly, a positive correlation between USP47 expression and hepatocyte proliferation was identified in patients with acute liver failure (ALF). SIGNIFICANCE: Our data suggest that USP47, transcriptionally activated by E2F1, plays an essential role in liver regeneration.


Subject(s)
Hepatocytes , Liver Regeneration , Ubiquitin-Specific Proteases , Male , Animals , Mice , Ubiquitin-Specific Proteases/metabolism , Hepatocytes/cytology , Cell Proliferation , Mice, Knockout , E2F1 Transcription Factor/metabolism , Humans
6.
Life Sci ; 328: 121824, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37270170

ABSTRACT

AIMS: Aberrant liver fibrosis is a hallmark event in end-stage liver diseases. Hepatic stellate cells (HSCs) are considered the major source of myofibroblasts in the liver that produce extracellular matrix proteins to promote liver fibrosis. HSCs undergo senescence in response to various stimuli, a process that can be exploited to dampen liver fibrosis. We investigated the role of serum response factor (SRF) in this process. METHODS AND MATERIALS: Senescence was induced HSCs by serum withdrawal or progressive passage. DNA-protein interaction was evaluated by chromatin immunoprecipitation (ChIP). RESULTS: SRF expression was down-regulated in HSCs entering into senescence. Coincidently, SRF depletion by RNAi accelerated HSC senescence. Of note, treatment of an anti-oxidant (N-acetylcysteine or NAC) blocked HSC senescence by SRF deficiency suggesting that SRF may antagonize HSC senescence by eliminating excessive reactive oxygen species (ROS). PCR-array based screening identified peroxidasin (PXDN) as a potential target for SRF in HSCs. PXDN expression was inversely correlated with HSC senescence whereas PXDN knockdown accelerated HSC senescence. Further analysis reveals that SRF directly bound to the PXDN promoter and activated PXDN transcription. Consistently, PXDN over-expression protected whereas PXDN depletion amplified HSC senescence. Finally, PXDN knockout mice displayed diminished liver fibrosis compared to wild type mice when subjected to bile duct ligation (BDL). SIGNIFICANCE: Our data suggest that SRF, via its downstream target PXDN, plays a key role in regulating HSC senescence.


Subject(s)
Hepatic Stellate Cells , Serum Response Factor , Mice , Animals , Hepatic Stellate Cells/metabolism , Serum Response Factor/genetics , Serum Response Factor/metabolism , Liver Cirrhosis/pathology , Liver/metabolism , Extracellular Matrix Proteins/metabolism , Mice, Knockout , Peroxidasin
7.
Cell Death Dis ; 14(6): 372, 2023 06 24.
Article in English | MEDLINE | ID: mdl-37355685

ABSTRACT

Robust regenerative response post liver injuries facilitates the architectural and functional recovery of the liver. Intrahepatic redox homeostasis plays a key role in liver regeneration. In the present study, we investigated the contributory role of Tribbles homolog 1 (Trib1), a pseudokinase, in liver regeneration and the underlying mechanism. We report that Trib1 expression was transiently down-regulated in animal and cell models of liver regeneration. Further analysis revealed that hepatocyte growth factor (HGF) repressed Trib1 transcription by evicting liver X receptor (LXRα) from the Trib1 promoter. Knockdown of Trib1 enhanced whereas over-expression of Trib1 suppressed liver regeneration after partial hepatectomy in mice. Of interest, regulation of liver regenerative response by Trib1 coincided with alterations of intracellular ROS levels, GSH levels, and antioxidant genes. Transcriptional assays suggested that Trib1 influenced cellular redox status by attenuating nuclear factor erythroid 2-related factor 2 (Nrf2) activity. Mechanistically, Trib1 interacted with the C-terminus of Nrf2 thus masking a potential nuclear localization signal (NLS) and blocking nuclear accumulation of Nrf2. Finally, correlation between Trib1 expression, Nrf2 nuclear localization, and cell proliferation was identified in liver specimens taken from patients with acute liver failure. In conclusion, our data unveil a novel pathway that depicts Trib1 as a critical link between intracellular redox homeostasis and cell proliferation in liver regeneration.


Subject(s)
Antioxidants , Liver Regeneration , Mice , Animals , Liver Regeneration/genetics , Antioxidants/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Liver/metabolism , Hepatectomy , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Intracellular Signaling Peptides and Proteins/metabolism
8.
JHEP Rep ; 5(6): 100724, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37234276

ABSTRACT

Background & Aims: Non-alcoholic fatty liver disease (NAFLD) contributes to the global epidemic of metabolic syndrome and is considered a prelude to end-stage liver diseases such as cirrhosis and hepatocellular carcinoma. During NAFLD pathogenesis, hepatic parenchymal cells (hepatocytes) undergo both morphological and functional changes owing to a rewired transcriptome. The underlying mechanism is not entirely clear. In the present study, we investigated the involvement of early growth response 1 (Egr1) in NAFLD. Methods: Quantitative PCR, Western blotting, and histochemical staining were used to assess gene expression levels. Chromatin immunoprecipitation was used to evaluate protein binding to DNA. NAFLD was evaluated in leptin receptor-deficient (db/db) mice. Results: We report here that Egr1 was upregulated by pro-NAFLD stimuli in vitro and in vivo. Further analysis revealed that serum response factor (SRF) was recruited to the Egr1 promoter and mediated Egr1 transactivation. Importantly, Egr1 depletion markedly mitigated NAFLD in db/db mice. RNA sequencing revealed that Egr1 knockdown in hepatocytes, on the one hand, boosted fatty acid oxidation (FAO) and, on the other hand, suppressed the synthesis of chemoattractants. Mechanistically, Egr1 interacted with peroxisome proliferator-activated receptor α (PPARα) to repress PPARα-dependent transcription of FAO genes by recruiting its co-repressor NGFI-A binding protein 1 (Nab1), which potentially led to promoter deacetylation of FAO genes. Conclusions: Our data identify Egr1 as a novel modulator of NAFLD and a potential target for NAFLD intervention. Impact and Implications: Non-alcoholic fatty liver disease (NAFLD) precedes cirrhosis and hepatocellular carcinoma. In this paper, we describe a novel mechanism whereby early growth response 1 (Egr1), a transcription factor, contributes to NAFLD pathogenesis by regulating fatty acid oxidation. Our data provide novel insights and translational potential for NAFLD intervention.

9.
EMBO Mol Med ; 15(3): e16592, 2023 03 08.
Article in English | MEDLINE | ID: mdl-36722664

ABSTRACT

Alcoholic liver disease (ALD) accounts for a large fraction of patients with cirrhosis and hepatocellular carcinoma. In the present study we investigated the involvement of Brahma-related gene 1 (Brg1) in ALD pathogenesis and implication in ALD intervention. We report that Brg1 expression was elevated in mouse models of ALD, in hepatocyte exposed to alcohol, and in human ALD specimens. Manipulation of Brg1 expression in hepatocytes influenced the development of ALD in mice. Flow cytometry showed that Brg1 deficiency specifically attenuated hepatic infiltration of Ly6G+ neutrophils in the ALD mice. RNA-seq identified C-X-C motif chemokine ligand 14 (CXCL14) as a potential target for Brg1. CXCL14 knockdown alleviated whereas CXCL14 over-expression enhanced ALD pathogenesis in mice. Importantly, pharmaceutical inhibition of Brg1 with a small-molecule compound PFI-3 or administration of an antagonist to the CXCL14 receptor ameliorated ALD pathogenesis in mice. Finally, a positive correlation between Brg1 expression, CXCL14 expression, and neutrophil infiltration was detected in ALD patients. In conclusion, our data provide proof-of-concept for targeting the Brg1-CXCL14 axis in ALD intervention.


Subject(s)
Chemokines, CXC , Liver Diseases, Alcoholic , Neutrophils , Animals , Humans , Mice , Chemokines, CXC/genetics , Chemokines, CXC/metabolism , Disease Models, Animal , Hepatocytes , Liver/pathology , Liver Diseases, Alcoholic/metabolism
10.
Life Sci ; 316: 121412, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36682522

ABSTRACT

AIMS: Excessive fibrogenesis in the kidney causes structural and functional damages and is considered a hallmark event in end-stage renal diseases (ESRD). During renal fibrosis, resident fibroblasts undergo profound changes to become myofibroblasts. In the present study we investigated the involvement of Slug (encoded by Snai2) in this process. MATERIALS AND METHODS: Renal fibrosis was induced by unilateral ureteral obstruction (UUO) in mice. Cellular transcriptome was evaluated by RNA-seq. KEY FINDINGS: We report that Slug expression was up-regulated during fibroblast-myofibroblast transition (FMyT) in vivo and in vitro. Slug knockdown attenuated TGF-ß induced FMyT in primary renal fibroblasts and ameliorated renal fibrosis in mice. RNA-seq analysis revealed that Slug promoted FMyT by enabling key pro-fibrogenic transcription factors including the orphan nuclear receptor COUP-TFII. Mechanistically, Slug enhanced intracellular ROS levels by modulating the expression of redox-related genes. Elevated ROS levels in turn stimulated transcription of LDL receptor related protein 1 (Lrp1) by COUP-TFII. Importantly, both a COUP-TFII antagonist and an Lrp1 neutralization antibody mitigated renal fibrosis in mice. SIGNIFICANCE: Our data support a role for Slug in regulating FMyT and renal fibrosis.


Subject(s)
Kidney Diseases , Ureteral Obstruction , Mice , Animals , Reactive Oxygen Species/metabolism , Kidney/metabolism , Ureteral Obstruction/pathology , Kidney Diseases/pathology , Fibrosis , Low Density Lipoprotein Receptor-Related Protein-1/metabolism
11.
Mitochondrial DNA B Resour ; 7(5): 727-728, 2022.
Article in English | MEDLINE | ID: mdl-35528250

ABSTRACT

The springtail Proisotoma minuta is a cosmopolitan species that can be found in many different habitats, especially in soil ecosystems. It is considered to be a good indicator of soil health. In this study, mitogenome information was obtained, which could lay a foundation for future fauna studies. The mitogenome of P. minuta is a circular module of 15,930 bp, including 13 protein-coding genes, 22 transfer RNA genes, and 2 ribosomal RNA genes. The mitogenome of P. minuta is composed of 35.9% A, 28.5% T, 13.7% G, and 21.3% C. Phylogenetic analysis revealed that P. minuta was well grouped in the subfamily Proisotominae and had a closer relationship with Anurophorinae than Isotominae subfamily and other families.

12.
Cell Death Dis ; 13(5): 495, 2022 05 25.
Article in English | MEDLINE | ID: mdl-35614068

ABSTRACT

Infiltration of eosinophils is associated with and contributes to liver regeneration. Chemotaxis of eosinophils is orchestrated by the eotaxin family of chemoattractants. We report here that expression of eotaxin-1 (referred to as eotaxin hereafter), but not that of either eotaxin-2 or eotaxin-3, were elevated, as measured by quantitative PCR and ELISA, in the proliferating murine livers compared to the quiescent livers. Similarly, exposure of primary murine hepatocytes to hepatocyte growth factor (HGF) stimulated eotaxin expression. Liver specific deletion of Brahma-related gene 1 (Brg1), a chromatin remodeling protein, attenuated eosinophil infiltration and down-regulated eotaxin expression in mice. Brg1 deficiency also blocked HGF-induced eotaxin expression in cultured hepatocytes. Further analysis revealed that Brg1 could directly bind to the proximal eotaxin promoter to activate its transcription. Mechanistically, Brg1 interacted with nuclear factor kappa B (NF-κB)/RelA to activate eotaxin transcription. NF-κB knockdown or pharmaceutical inhibition disrupted Brg1 recruitment to the eotaxin promoter and blocked eotaxin induction in hepatocytes. Adenoviral mediated over-expression of eotaxin overcame Brg1 deficiency caused delay in liver regeneration in mice. On the contrary, eotaxin depletion with RNAi or neutralizing antibodies retarded liver regeneration in mice. More important, Brg1 expression was detected to be correlated with eotaxin expression and eosinophil infiltration in human liver specimens. In conclusion, our data unveil a novel role of Brg1 as a regulator of eosinophil trafficking by activating eotaxin transcription.


Subject(s)
Chemokine CCL11 , DNA Helicases , Liver Regeneration , Nuclear Proteins , Transcription Factors , Animals , Cells, Cultured , Chemokine CCL11/genetics , Chemokine CCL11/metabolism , DNA Helicases/genetics , DNA Helicases/metabolism , Mice , NF-kappa B/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptional Activation
13.
Front Cell Dev Biol ; 9: 742319, 2021.
Article in English | MEDLINE | ID: mdl-34746136

ABSTRACT

Liver regeneration is characterized by cell cycle reentrance of hepatocytes. N-Myc, encoded by MYCN, is a member of the Myc family of transcription factors. Elevation of MYCN expression has been noted in the course of liver regeneration whereas the underlying mechanism remains unclear. Here we describe that up-regulation of MYCN expression, as measured by quantitative PCR, Western blotting, and immunohistochemical staining, paralleled liver regeneration in animal and cell models. MYCN expression was up-regulated as a result of transcriptional activation. Ingenuity pathway analysis (IPA) revealed several up-stream transcriptional regulators for MYCN and RNA interference validated E2F5 and TFDP1 as essential for hepatocyte growth factor (HGF)-induced MYCN trans-activation. Further examination showed that deficiency of BRG1, a chromatin remodeling protein, attenuated MYCN induction during liver regeneration. BRG1 interacted with and was recruited by E2F5/TFDP1 to the MYCN promoter. Mechanistically, BRG1 might play a role regulating histone H3 acetylation and H3K4 trimethylation and facilitating/stabilizing the binding of RNA polymerase II surrounding the MYCN promoter. Over-expression of ectopic MYCN in BRG1-null hepatocytes overcame deficiency of proliferation. Importantly, a positive correlation between MYCN expression and BRG1/E2F5/TFDP1 expression was observed in human liver specimens. In conclusion, our data identify a novel epigenetic pathway where an E2F5-TFDP1-BRG1 complex regulates MYCN transcription to promote liver regeneration.

14.
Front Cell Dev Biol ; 9: 697614, 2021.
Article in English | MEDLINE | ID: mdl-34631698

ABSTRACT

Intestinal fibrosis is one of the common pathophysiological processes in inflammatory bowel diseases (IBDs). Previously it has been demonstrated that epithelial-mesenchymal transition (EMT) can contribute to the development of intestinal fibrosis. Here we report that conditional ablation of SIRT1, a class III lysine deacetylase, in intestinal epithelial cells exacerbated 2, 4, 6-trinitro-benzene sulfonic acid (TNBS) induced intestinal fibrosis in mice. SIRT1 activity, but not SIRT1 expression, was down-regulated during EMT likely due to up-regulation of its inhibitor deleted in breast cancer 1 (DBC1). TGF-ß augmented the recruitment of KDM4A, a histone H3K9 demethylase, to the DBC1 promoter in cultured intestinal epithelial cells (IEC-6) leading to DBC1 trans-activation. KDM4A depletion or inhibition abrogated DBC1 induction by TGF-ß and normalized SIRT1 activity. In addition, KDM4A deficiency attenuated TGF-ß induced EMT in IEC-6 cells. In conclusion, our data identify a KDM4-DBC1-SIRT1 pathway that regulates EMT to contribute to intestinal fibrosis.

15.
Front Cell Dev Biol ; 9: 745985, 2021.
Article in English | MEDLINE | ID: mdl-34660604

ABSTRACT

Excessive accumulation of reactive oxygen species (ROS) is considered a major culprit for the pathogenesis of non-alcoholic fatty liver disease (NAFLD). We have previously shown that deletion of Brahma related gene 1 (BRG1) mitigated NAFLD in mice in part by attenuating ROS production in hepatocyte. Here we report that BRG1 deletion led to simultaneous down-regulation in expression and phosphorylation of tank binding kinase 1 (TBK1) in vivo and in vitro. On the one hand, BRG1 interacted with AP-1 to bind to the TBK1 promoter and directly activated TBK1 transcription in hepatocytes. On the other hand, BRG1 interacted with Sp1 to activate the transcription of c-SRC, a tyrosine kinase essential for TBK1 phosphorylation. Over-expression of c-SRC and TBK1 corrected the deficiency in ROS production in BRG1-null hepatocytes whereas depletion of TBK1 or c-SRC attenuated ROS production. In conclusion, our data suggest that dual regulation of TBK1 activity, at the transcription level and the post-transcriptional level, by BRG1 may constitute an important mechanism underlying excessive ROS production in hepatocytes.

16.
Cell Death Discov ; 7(1): 308, 2021 Oct 23.
Article in English | MEDLINE | ID: mdl-34689159

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is prototypical form of metabolic syndrome and has become a global pandemic. Hepatocytes undergo apoptosis in the pathogenesis of NAFLD. We report that the lymphokine LIGHT/TNFSF14 was upregulated in the murine NAFLD livers and in hepatocytes treated with free fatty acids (palmitate, PA). LIGHT knockdown or neutralization attenuated PA-induced apoptosis of hepatocytes. Similarly, knockdown or blockade of LTßR, the receptor for LIGHT, ameliorated apoptosis in hepatocytes exposed to PA. Ingenuity pathway analysis (IPA) revealed several Notch-related transcription factors as upstream regulators of LIGHT, of which HES5 expression was downregulated paralleling LIGHT induction in the pathogenesis of NAFLD. HES5 knockdown enhanced whereas HES5 over-expression weakened LIGHT induction in hepatocytes. HES5 was found to directly bind to the LIGHT promoter and repress LIGHT transcription. Mechanistically, HES5 interacted with SIRT1 to deacetylate histone H3/H4 on the LIGHT promoter to repress LIGHT transcription. SIRT1 knockdown or inhibition offset the effect of HES5 over-expression on LIGHT transcription and hepatocyte apoptosis. In conclusion, our data unveil a novel mechanism that might contribute to excessive apoptosis in hepatocyte exposed to free fatty acids.

17.
Front Cell Dev Biol ; 9: 705302, 2021.
Article in English | MEDLINE | ID: mdl-34422825

ABSTRACT

Liver regeneration is a key compensatory process in response to liver injury serving to contain damages and to rescue liver functions. Hepatocytes, having temporarily exited the cell cycle after embryogenesis, resume proliferation to regenerate the injured liver parenchyma. In the present study we investigated the transcriptional regulation of choline kinase alpha (Chka) in hepatocytes in the context of liver regeneration. We report that Chka expression was significantly up-regulated in the regenerating livers in the partial hepatectomy (PHx) model and the acetaminophen (APAP) injection model. In addition, treatment with hepatocyte growth factor (HGF), a strong pro-proliferative cue, stimulated Chka expression in primary hepatocytes. Chka depletion attenuated HGF-induced proliferation of hepatocytes as evidenced by quantitative PCR and Western blotting measurements of pro-proliferative genes as well as EdU incorporation into replicating DNA. Of interest, deletion of Brahma-related gene 1 (Brg1), a chromatin remodeling protein, attenuated Chka induction in the regenerating livers in mice and in cultured hepatocytes. Further analysis revealed that Brg1 interacted with hypoxia-inducible factor 1 alpha (HIF-1α) to directly bind to the Chka promoter and activate Chka transcription. Finally, examination of human acute liver failure (ALF) specimens identified a positive correlation between Chka expression and Brg1 expression. In conclusion, our data suggest that Brg1-dependent trans-activation of Chka expression may contribute to liver regeneration.

18.
Front Cell Dev Biol ; 9: 698254, 2021.
Article in English | MEDLINE | ID: mdl-34381779

ABSTRACT

Endothelin, encoded by ET1, is a vasoactive substance primarily synthesized in vascular endothelial cells (VECs). Elevation of endothelin levels, due to transcriptional hyperactivation, has been observed in a host of cardiovascular diseases. We have previously shown that serum response factor (SRF) is a regulator of ET1 transcription in VECs. Here we report that angiotensin II (Ang II) induced ET1 transcription paralleled activation of glycogen synthase kinase 3 (GSK3) in cultured VECs. GSK3 knockdown or pharmaceutical inhibition attenuated Ang II induced endothelin expression. Of interest, the effect of GSK3 on endothelin transcription relied on the conserved SRF motif within the ET1 promoter. Further analysis revealed that GSK3 interacted with and phosphorylated SRF at serine 224. Phosphorylation of SRF by GSK3 did not influence its recruitment to the ET1 promoter. Instead, GSK3-mediated SRF phosphorylation potentiated its interaction with MRTF-A, a key co-factor for SRF, which helped recruit the chromatin remodeling protein BRG1 to the ET1 promoter resulting in augmented histone H3 acetylation/H3K4 trimethylation. Consistently, over-expression of a constitutively active GSK enhanced Ang II-induced ET1 transcription and knockdown of either MRTF-A or BRG1 abrogated the enhancement of ET1 transcription. In conclusion, our data highlight a previously unrecognized mechanism that contributes to the transcriptional regulation of endothelin. Targeting this GSK3-SRF axis may yield novel approaches in the intervention of cardiovascular diseases.

19.
Redox Biol ; 46: 102079, 2021 10.
Article in English | MEDLINE | ID: mdl-34454163

ABSTRACT

Liver injuries induced by various stimuli share in common an acute inflammatory response, in which circulating macrophages home to the liver parenchyma to participate in the regulation of repair, regeneration, and fibrosis. In the present study we investigated the role of hepatocyte-derived C-C motif ligand 7 (CCL7) in macrophage migration during liver injury focusing on its transcriptional regulation. We report that CCL7 expression was up-regulated in the liver by lipopolysaccharide (LPS) injection (acute liver injury) or methionine-and-choline-deficient (MCD) diet feeding (chronic liver injury) paralleling increased macrophage infiltration. CCL7 expression was also inducible in hepatocytes, but not in hepatic stellate cells or in Kupffer cells, by LPS treatment or exposure to palmitate in vitro. Hepatocyte-specific deletion of Brahma-related gene 1 (BRG1), a chromatin remodeling protein, resulted in a concomitant loss of CCL7 induction and macrophage infiltration in the murine livers. Of interest, BRG1-induced CCL7 transcription and macrophage migration was completely blocked by the antioxidant N-acetylcystine. Further analyses revealed that BRG1 interacted with activator protein 1 (AP-1) to regulate CCL7 transcription in hepatocytes in a redox-sensitive manner mediated in part by casein kinase 2 (CK2)-catalyzed phosphorylation of BRG1. Importantly, a positive correlation between BRG1/CCL7 expression and macrophage infiltration was identified in human liver biopsy specimens. In conclusion, our data unveil a novel role for BRG1 as a redox-sensitive activator of CCL7 transcription.


Subject(s)
DNA Helicases , Nuclear Proteins , Animals , Cells, Cultured , Chemokine CCL7/metabolism , Hepatocytes/metabolism , Humans , Liver/metabolism , Mice , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Oxidation-Reduction , Transcription Factors
20.
Sci Rep ; 8(1): 11301, 2018 Jul 23.
Article in English | MEDLINE | ID: mdl-30038345

ABSTRACT

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

SELECTION OF CITATIONS
SEARCH DETAIL
...