Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Pharmacol Sin ; 43(4): 963-976, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34267342

ABSTRACT

Bergenin is a natural PPARγ agonist that can prevent neutrophil aggregation, and often be used in clinics for treating respiratory diseases. Recent data show that Th17 cells are important for neutrophil aggregation and asthma through secreting IL-17A. In this study, we investigated the effects of bergenin on Th17 differentiation in vitro and subsequent neutrophilic asthma in mice. Naïve T cells isolated from mouse mesenteric lymph nodes were treated with IL-23, TGF-ß, and IL-6 to induce Th17 differentiation. We showed that in naïve T cells under Th17-polarizing condition, the addition of bergenin (3, 10, 30 µM) concentration-dependently decreased the percentage of CD4+ IL-17A+ T cells and mRNA expression of specific transcription factor RORγt, and function-related factors IL-17A/F, IL-21, and IL-22, but did not affect the cell vitality and apoptosis. Furthermore, bergenin treatment prevented GLS1-dependent glutaminolysis in the progress of Th17 differentiation, slightly affected the levels of SLC1A5, SLC38A1, GLUD1, GOT1, and GPT2. Glutamine deprivation, the addition of glutamate (1 mM), α-ketoglutarate (1 mM), or GLS1 plasmid all significantly attenuated the above-mentioned actions of bergenin. Besides, we demonstrated that bergenin (3, 10, and 30 µM) concentration-dependently activated PPARγ in naïve T cells, whereas PPARγ antagonist GW9662 and siPPARγ abolished bergenin-caused inhibition on glutaminolysis and Th17 differentiation. Furthermore, we revealed that bergenin inhibited glutaminolysis by regulating the level of CDK1, phosphorylation and degradation of Cdh1, and APC/C-Cdh1-mediated ubiquitin-proteasomal degradation of GLS1 after activating PPARγ. We demonstrated a correlation existing among bergenin-affected GLS1-dependent glutaminolysis, PPARγ, "CDK1-APC/C-Cdh1" signaling, and Th17 differentiation. Finally, the therapeutic effect and mechanisms for bergenin-inhibited Th17 responses and neutrophilic asthma were confirmed in a mouse model of neutrophilic asthma by administration of GW9662 or GLS1 overexpression plasmid in vivo. In conclusion, bergenin repressed Th17 differentiation and then alleviated neutrophilic asthma in mice by inhibiting GLS1-dependent glutaminolysis via regulating the "CDK1-APC/C-Cdh1" signaling after activating PPARγ.


Subject(s)
Asthma , Th17 Cells , Animals , Asthma/drug therapy , Asthma/pathology , Benzopyrans/pharmacology , Benzopyrans/therapeutic use , Cell Differentiation , Glutaminase , Mice , PPAR gamma/metabolism
2.
Acta Pharmacol Sin ; 42(3): 422-435, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32694760

ABSTRACT

Oral administration of curcumin has been shown to inhibit pulmonary fibrosis (PF) despite its extremely low bioavailability. In this study, we investigated the mechanisms underlying the anti-PF effect of curcumin in focus on intestinal endocrine. In bleomycin- and SiO2-treated mice, curcumin (75, 150 mg· kg-1 per day) exerted dose-dependent anti-PF effect when administered orally or rectally but not intravenously, implying an intestinal route was involved in the action of curcumin. We speculated that curcumin might promote the generation of gut-derived factors and the latter acted as a mediator subsequently entering the lungs to ameliorate fibrosis. We showed that oral administration of curcumin indeed significantly increased the expression of gut-derived hepatocyte growth factor (HGF) in colon tissues. Furthermore, in bleomycin-treated mice, the upregulated protein level of HGF in lungs by oral curcumin was highly correlated with its anti-PF effect, which was further confirmed by coadministration of c-Met inhibitor SU11274. Curcumin (5-40 µM) dose-dependently increased HGF expression in primary mouse fibroblasts, macrophages, CCD-18Co cells (fibroblast cell line), and RAW264.7 cells (monocyte-macrophage cell line), but not in primary colonic epithelial cells. In CCD-18Co cells and RAW264.7 cells, curcumin dose-dependently activated PPARγ and CREB, whereas PPARγ antagonist GW9662 (1 µM) or cAMP response element (CREB) inhibitor KG-501 (10 µM) significantly decreased the boosting effect of curcumin on HGF expression. Finally, we revealed that curcumin dose-dependently increased the production of 15-deoxy-Δ12, 14-prostaglandin J2 (15d-PGJ2) in CCD-18Co cells and RAW264.7 cells, which was a common upstream of the two transcription factors. Moreover, both the in vitro and in vivo effects of curcumin were diminished by coadministration of HPGDS-inhibitor-1, an inhibitor of 15d-PGJ2 generation. Together, curcumin promotes the expression of HGF in colonic fibroblasts and macrophages by activating PPARγ and CREB via an induction of 15d-PGJ2, and the HGF enters the lungs giving rise to an anti-PF effect.


Subject(s)
Colon/drug effects , Curcumin/therapeutic use , Hepatocyte Growth Factor/metabolism , Prostaglandin D2/analogs & derivatives , Pulmonary Fibrosis/drug therapy , Administration, Oral , Animals , Colon/cytology , Colon/metabolism , Curcumin/administration & dosage , Cyclic AMP Response Element-Binding Protein/metabolism , Female , Fibroblasts/metabolism , Humans , Lung/drug effects , Lung/metabolism , Lung/pathology , Macrophages/metabolism , Mice , Mice, Inbred ICR , PPAR gamma/metabolism , Prostaglandin D2/metabolism , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , RAW 264.7 Cells , Up-Regulation/drug effects
3.
Biochem Pharmacol ; 155: 494-509, 2018 09.
Article in English | MEDLINE | ID: mdl-30071202

ABSTRACT

The present study aimed to evaluate the anti-colitis effect and underlying mechanisms of cardamonin, a natural flavone isolated from Alpinia katsumadai Hayata. The results showed that oral cardamonin significantly inhibited dextran sulfate sodium (DSS)- and 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis in mice, evidenced by improvement of disease activity index scores, myeloperoxidase activity, length shortening and histopathological changes of colons. A rectal administration of cardamonin also exhibited marked anti-colitis effect, suggesting that oral cardamonin might function in a prototype form. Cardamonin down-regulated levels of IL-1ß, TNF-α, IL-6, NLRP3, cleaved caspase-1, ASC, cleaved IL-1ß in colons of colitis mice. In vitro, cardamonin inhibited NLRP3 inflammasome activation in THP-1 and bone marrow-derived macrophages. It acted as an AhR activator, enhanced dissociation of AhR/HSP90 complexes, association of AhR/ARNT complexes, AhR nuclear translocation, XRE reporter gene activity, and AhR/ARNT/XRE DNA binding activity in THP-1 cells. The AhR antagonist CH223191 obviously abolished NLRP3 inflammasome activation inhibited by cardamonin. Furthermore, cardamonin elevated levels of Nrf2 and its target genes NQO1, Trx1, SOD2, HO-1, and the effect on NQO1 was the most obvious. The relationship of cardamonin-adjusted AhR activation, expressions of Nrf2 and NQO1, and NLRP3 inflammasome activation was confirmed by using CH223191, siAhR, ML385 and siNQO1, respectively. Finally, CH223191 was shown to abolish amelioration of cardamonin on DSS- and TNBS-induced colitis, inhibition of NLRP3 inflammasome activation and up-regulation of Nrf2 and NQO1 levels in colons. Taken together, cardamonin ameliorated colitis in mice through the activation of AhR/Nrf2/NQO1 pathway and consequent inhibition of NLRP3 inflammasome activation.


Subject(s)
Chalcones/therapeutic use , Inflammatory Bowel Diseases/metabolism , NAD(P)H Dehydrogenase (Quinone)/metabolism , NF-E2-Related Factor 2/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Animals , Cell Survival/drug effects , Cell Survival/physiology , Chalcones/pharmacology , Dose-Response Relationship, Drug , Flavones/pharmacology , Flavones/therapeutic use , Inflammatory Bowel Diseases/drug therapy , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors , Signal Transduction/drug effects , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...