Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 9(1): 17346, 2019 Nov 22.
Article in English | MEDLINE | ID: mdl-31757996

ABSTRACT

Carrier recombination and scattering at the semiconductor boundaries can substantially limit the device efficiency. However, surface and interface recombination is generally neglected in the nitride-based devices. Here, we study carrier recombination and diffusivity in AlGaN/GaN/sapphire heterointerfaces with AlGaN barriers of different quality. We employ the light induced transient grating and time-resolved photoluminescence spectroscopy techniques to extract carrier lifetime in different depths of the GaN buffer as well as in the AlGaN barrier, and to evaluate the carrier diffusion coefficient in the buffer. Moreover, we assess interface recombination velocity, Shockley-Read-Hall and radiative recombination rates. We reveal the adverse barrier influence on carrier dynamics in the underlying buffer: AlGaN barrier accelerates the nonradiative carrier recombination in the GaN buffer. The interface recombination velocity in the GaN buffer increases with decreasing AlGaN barrier quality, and the dominating recombination mechanism switches from Shockley-Read-Hall to interface recombination. These phenomena are governed by a cumulative effect of various interface-deteriorating barrier defects. Meanwhile, the carrier diffusivity in the GaN buffer is not affected by the AlGaN barrier. We conclude that barrier-accelerated interface recombination can become a major carrier loss mechanism in AlGaN/GaN interface, and may substantially limit the efficiency in nitride-based UV LEDs.

2.
J Phys Chem Lett ; 9(12): 3167-3172, 2018 Jun 21.
Article in English | MEDLINE | ID: mdl-29806463

ABSTRACT

Carrier mobility is one of the crucial parameters determining the electronic device performance. We apply the light-induced transient grating technique to measure independently the carrier diffusion coefficient and lifetime, and to reveal the impact of additives on carrier transport properties in wet-cast CH3NH3PbI3 (MAPbI3) perovskite films. We use the high excitation regime, where diffusion length of carriers is controlled purely by carrier diffusion and not by the lifetime. We demonstrate a four-fold increase in diffusion coefficient due to the reduction of localization center density by additives; however, the density dependence analysis shows the dominance of localization-limited diffusion regime. The presented approach allows us to estimate the limits of technological improvement-carrier diffusion coefficient in wet-cast layers can be expected to be enhanced by up to one order of magnitude.

SELECTION OF CITATIONS
SEARCH DETAIL
...