Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(11)2023 May 24.
Article in English | MEDLINE | ID: mdl-37298138

ABSTRACT

The treatment of acne and other seborrheic diseases has arisen as a significant clinical challenge due to the increasing appearance of multi-drug resistant pathogens and a high frequency of recurrent lesions. Taking into consideration the fact that some Knautia species are valuable curatives in skin diseases in traditional medicine, we assumed that the thus far unstudied species K. drymeia and K. macedonica may be a source of active substances used in skin diseases. The purpose of this study was to evaluate the antioxidant, anti-inflammatory, antibacterial, and cytotoxic activities of their extracts and fractions. An LC-MS analysis revealed the presence of 47 compounds belonging to flavonoids and phenolic acids in both species while the GC-MS procedure allowed for the identification mainly sugar derivatives, phytosterols, and fatty acids and their esters. The ethanol as well as methanol-acetone-water (3:1:1) extracts of K. drymeia (KDE and KDM) exhibited great ability to scavenge free radicals and good capacity to inhibit cyclooxygenase-1, cyclooxygenase-2, and lipoxygenase. Moreover, they had the most favorable low minimal inhibitory concentration values against acne strains, and importantly, they were non-toxic toward normal skin fibroblasts. In conclusion, K. drymeia extracts seem to be promising and safe agents for further biomedical applications.


Subject(s)
Dipsacaceae , Skin Diseases , Humans , Plant Extracts/chemistry , Anti-Bacterial Agents/pharmacology , Medicine, Traditional , Antioxidants/pharmacology , Antioxidants/chemistry
2.
Sci Rep ; 13(1): 9142, 2023 06 05.
Article in English | MEDLINE | ID: mdl-37277512

ABSTRACT

The purpose of our study was to evaluate the composition of the extracts obtained from the roots and leaves of Eutrema japonicum cultivated in Poland. For this purpose, LC-DAD-IT-MS and LC-Q-TOF-MS analyses were used. The results revealed the presence of forty-two constituents comprising glycosinolates, phenylpropanoid glycosides, flavone glycosides, hydroxycinnamic acids, and other compounds. Then, the resultant extracts were subjected to an assessment of the potential cytotoxic effect on human colon adenocarcinoma cells, the effect on the growth of probiotic and intestinal pathogenic strains, as well as their anti-inflammatory activity. It was demonstrated that 60% ethanol extract from the biennial roots (WR2) had the strongest anti-inflammatory, antibacterial, and cytotoxic activities compared to the other samples. Our results suggest that extracts from E. japonicum may be considered as a promising compound for the production of health-promoting supplements.


Subject(s)
Adenocarcinoma , Colonic Neoplasms , Wasabia , Humans , Colonic Neoplasms/drug therapy , Plant Leaves/chemistry , Plant Extracts/chemistry , Glycosides/analysis , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/analysis
3.
Molecules ; 27(9)2022 May 02.
Article in English | MEDLINE | ID: mdl-35566257

ABSTRACT

This study aimed to evaluate the phenolic profile and biological activity of the extracts from the leaves and fruits of Cotoneaster nebrodensis and Cotoneaster roseus. Considering that miscellaneous species of Cotoneaster are thought to be healing in traditional Asian medicine, we assumed that this uninvestigated species may reveal significant therapeutic properties. Here, we report the simultaneous assessment of chemical composition as well as biological activities (antioxidant, anti-inflammatory, antibacterial, and cytotoxic properties) of tested species. Complementary LC-MS analysis revealed that polyphenols (especially flavonoids and proanthocyanidins) are the overriding phytochemicals with the greatest significance in tested biological activities. In vitro chemical tests considering biological activities revealed that obtained results showed different values depending on concentration, extraction solvent as well as phenolic content. Biological assays demonstrated that the investigated extracts possessed antibacterial properties and were not cytotoxic toward normal skin fibroblasts. Given the obtained results, we concluded that knowledge of the chemical composition and biological activities of investigated species are important to achieve a better understanding of the utilization of these plants in traditional medicine and be useful for further research in their application to treat various diseases, such as skin disorders.


Subject(s)
Acne Vulgaris , Rosaceae , Acne Vulgaris/drug therapy , Anti-Bacterial Agents/therapeutic use , Antioxidants/chemistry , Fruit/chemistry , Phenols/analysis , Phenols/pharmacology , Plant Extracts/chemistry , Plant Leaves/chemistry , Rosaceae/chemistry
4.
Cells ; 11(9)2022 04 20.
Article in English | MEDLINE | ID: mdl-35563701

ABSTRACT

The aim of our research was to describe the structure and growth potential of a cell suspension of the tree fern Cyathea smithii. Experiments were performed on an established cell suspension with ½ MS medium supplemented with 9.05 µM 2,4-D + 0.88 µM BAP. In the experiments, attention was paid to the microscopic description of cell suspension, evaluation of cell growth dependent on the initial mass of cells and organic carbon source in the medium, the length of the passage, the content of one selected flavonoid in the post-culture medium, nuclear DNA content, ethylene production, and the antimicrobial value of the extract. For a better understanding of the cell changes that occurred during the culture of the suspension, the following structures of the cell were observed: nucleus, lipid bodies, tannin deposits, starch grains, cell walls, primary lamina, and the filaments of metabolites released into the medium. The nuclear DNA content (acriflavine-Feulgen staining) of cell aggregates distinctly indicated a lack of changes in the sporophytic origin of the cultured cell suspension. The physiological activity of the suspension was found to be high because of kinetics, intensive production of ethylene, and quercetin production. The microbiological studies suggested that the cell suspension possessed a bactericidal character against microaerobic Gram-positive bacteria. A sample of the cell suspension showed bacteriostatic activity against aerobic bacteria.


Subject(s)
Ferns , 2,4-Dichlorophenoxyacetic Acid/metabolism , Anti-Bacterial Agents , Biotechnology , Ethylenes/metabolism , Ferns/metabolism , Suspensions
5.
Cells ; 11(3)2022 01 21.
Article in English | MEDLINE | ID: mdl-35159177

ABSTRACT

In light of current knowledge on the role of reactive oxygen species and other oxidants in skin diseases, it is clear that oxidative stress facilitates inflammation and is an important factor involved in skin diseases, i.e., acne. Taking into consideration the fact that some Cotoneaster plants are valuable curatives in skin diseases in traditional Asian medicine, we assumed that thus far untested species C. hsingshangensis and C. hissaricus may be a source of substances used in skin diseases. The aim of this study was to evaluate the antioxidant, anti-inflammatory, antimicrobial, and cytotoxic activities of their various extracts. LC-MS analysis revealed the presence of 47 compounds (flavonoids, phenolic acids, coumarins, sphingolipids, carbohydrates), while GC-MS procedure allowed for the identification of 42 constituents (sugar derivatives, phytosterols, fatty acids, and their esters). The diethyl ether fraction of C. hsingshangensis (CHs-2) exhibited great ability to scavenge free radicals and good capacity to inhibit cyclooxygenase-1, cyclooxygenase-2, lipoxygenase, and hyaluronidase. Moreover, it had the most promising power against microaerobic Gram-positive strains, and importantly, it was non-toxic toward normal skin fibroblasts. Taking into account the value of the calculated therapeutic index (>10), it is worth noting that CHs-2 can be subjected to in vivo study and constitutes a promising anti-acne agent.


Subject(s)
Acne Vulgaris , Rosaceae , Acne Vulgaris/drug therapy , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Rosaceae/chemistry
6.
Molecules ; 26(15)2021 Jul 31.
Article in English | MEDLINE | ID: mdl-34361814

ABSTRACT

The study demonstrated the effects of precursor feeding on the production of glucosinolates (GSLs), flavonoids, polyphenols, saccharides, and photosynthetic pigments in Nasturtium officinale microshoot cultures grown in Plantform bioreactors. It also evaluated the antioxidant and antimicrobial activities of extracts. L-phenylalanine (Phe) and L-tryptophan (Trp) as precursors were tested at 0.05, 0.1, 0.5, 1.0, and 3.0 mM. They were added at the beginning (day 0) or on day 10 of the culture. Microshoots were harvested after 20 days. Microshoots treated with 3.0 mM Phe (day 0) had the highest total GSL content (269.20 mg/100 g DW). The qualitative and quantitative profiles of the GSLs (UHPLC-DAD-MS/MS) were influenced by precursor feeding. Phe at 3.0 mM stimulated the best production of 4-methoxyglucobrassicin (149.99 mg/100 g DW) and gluconasturtiin (36.17 mg/100 g DW). Total flavonoids increased to a maximum of 1364.38 mg/100 g DW with 3.0 mM Phe (day 0), and polyphenols to a maximum of 1062.76 mg/100 g DW with 3.0 mM Trp (day 0). The precursors also increased the amounts of p-coumaric and ferulic acids, and rutoside, and generally increased the production of active photosynthetic pigments. Antioxidant potential increased the most with 0.1 mM Phe (day 0) (CUPRAC, FRAP), and with 0.5 mM Trp (day 10) (DPPH). The extracts of microshoots treated with 3.0 mM Phe (day 0) showed the most promising bacteriostatic activity against microaerobic Gram-positive acne strains (MIC 250-500 µg/mL, 20-21 mm inhibition zones). No extract was cytotoxic to normal human fibroblasts over the tested concentration range (up to 250 µg/mL).


Subject(s)
Antioxidants/chemistry , Nasturtium/chemistry , Plant Extracts/chemistry , Plant Shoots/chemistry , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Antioxidants/pharmacology , Biomass , Bioreactors , Chromatography, High Pressure Liquid , Culture Media , Humans , Nasturtium/metabolism , Plant Extracts/pharmacology , Plant Shoots/growth & development , Schisandra/chemistry , Tandem Mass Spectrometry
7.
Int J Mol Sci ; 22(12)2021 Jun 09.
Article in English | MEDLINE | ID: mdl-34207583

ABSTRACT

Skin aging is a natural, unavoidable, and complex process caused by oxidative stress. As a consequence, it leads to an increase in the activation of extracellular matrix disruption enzymes and DNA damage. The search for natural sources that inhibit these mechanisms can be a good approach to prevent skin aging. The purpose of our study was to evaluate the composition of flavonoids and phenolic acids in the extracts obtained from the flowers, roots, and leaves of Eutrema japonicum cultivated in Poland. Then, the resultant extracts were subjected to an assessment of antioxidant, anti-collagenase, anti-elastase, anti-hyaluronidase, antibacterial, and cytotoxic properties. It was demonstrated that the extract from the flowers had the highest content of flavonoid glycosides (17.15 mg/g DE). This extract showed the greatest antioxidant, anti-collagenase, anti-elastase, and anti-hyaluronidase activities compared to the other samples. Importantly, the collagenase inhibitory activity of this extract (93.34% ± 0.77%) was better than that of positive control epigallocatechin gallate (88.49% ± 0.45%). An undeniable advantage of this extract was also to possess moderate antibacterial properties and no cytotoxicity towards normal human skin fibroblasts. Our results suggest that extracts from E. japonicum flowers may be considered as a promising antiaging compound for applications in cosmetic formulations.


Subject(s)
Aging/drug effects , Flavonoids , Hydroxybenzoates , Wasabia/chemistry , A549 Cells , Flavonoids/chemistry , Flavonoids/pharmacology , Humans , Hydroxybenzoates/chemistry , Hydroxybenzoates/pharmacology , Poland , Wasabia/growth & development
8.
Materials (Basel) ; 14(7)2021 Mar 30.
Article in English | MEDLINE | ID: mdl-33808411

ABSTRACT

The aim of this study was to evaluate the effect of modification with liquid rubber on the adhesion to tooth tissues (enamel, dentin), wettability and ability to inhibit bacterial biofilm formation of resin-based dental composites. Two commercial composites (Flow-Art-flow type with 60% ceramic filler and Boston-packable type with 78% ceramic filler; both from Arkona Laboratorium Farmakologii Stomatologicznej, Nasutów, Poland) were modified by addition of 5% by weight (of resin) of a liquid methacrylate-terminated polybutadiene. Results showed that modification of the flow type composite significantly (p < 0.05) increased the shear bond strength values by 17% for enamel and by 33% for dentine. Addition of liquid rubber significantly (p < 0.05) reduced also hydrophilicity of the dental materials since the water contact angle was increased from 81-83° to 87-89°. Interestingly, modified packable type material showed improved antibiofilm activity against Steptococcus mutans and Streptococcus sanguinis (quantitative assay with crystal violet), but also cytotoxicity against eukaryotic cells since cell viability was reduced to 37% as proven in a direct-contact WST-8 test. Introduction of the same modification to the flow type material significantly improved its antibiofilm properties (biofilm reduction by approximately 6% compared to the unmodified material, p < 0.05) without cytotoxic effects against human fibroblasts (cell viability near 100%). Thus, modified flow type composite may be considered as a candidate to be used as restorative material since it exhibits both nontoxicity and antibiofilm properties.

9.
Molecules ; 26(8)2021 Apr 19.
Article in English | MEDLINE | ID: mdl-33921703

ABSTRACT

Given the health-beneficial properties of compounds from hop, there is still a growing trend towards developing successful extraction methods with the highest yield and also receiving the products with high added value. The aim of this study was to develop efficient extraction method for isolation of bioactive compounds from the Polish "Marynka" hop variety. The modified two-step supercritical fluid extraction allowed to obtain two hop samples, namely crude extract (E1), composed of α-acids, ß-acids, and terpene derivatives, as well as pure xanthohumol with higher yield than that of other available methods. The post-extraction residues (R1) were re-extracted in order to obtain extract E2 enriched in xanthohumol. Then, both samples were subjected to investigation of their antibacterial (anti-acne, anti-caries), cytotoxic, and anti-proliferative activities in vitro. It was demonstrated that extract (E1) possessed more beneficial biological properties than xanthohumol. It exhibited not only better antibacterial activity against Gram-positive bacteria strains (MIC, MBC) but also possessed a higher synergistic effect with commercial antibiotics when compared to xanthohumol. Moreover, cell culture experiments revealed that crude extract neither inhibited viability nor divisions of normal skin fibroblasts as strongly as xanthohumol. In turn, calculated selectivity indexes showed that the crude extract had from slightly to significantly better selective anti-proliferative activity towards cancer cells in comparison with xanthohumol.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Chromatography, Supercritical Fluid/methods , Anti-Bacterial Agents/pharmacology , Flavonoids/chemistry , Flavonoids/isolation & purification , Flavonoids/pharmacology , Gram-Positive Bacteria/drug effects , Humulus/chemistry , Propiophenones/chemistry , Propiophenones/isolation & purification , Propiophenones/pharmacology
10.
Materials (Basel) ; 14(5)2021 Feb 27.
Article in English | MEDLINE | ID: mdl-33673643

ABSTRACT

This paper presents the properties of the wood-resin composites. For improving their antibacterial character, silver nanoparticles were incorporated into their structures. The properties of the obtained materials were analyzed in vitro for their anti-biofilm potency in contact with aerobic Gram-positive Staphylococcus aureus and Staphylococcus epidermidis; and aerobic Gram-negative Escherichia coli and Pseudomonas aeruginosa. These pathogens are responsible for various infections, including those associated with healthcare. The effect of silver nanoparticles incorporation on mechanical and thermomechanical properties as well as gloss were investigated for the samples of composites before and after accelerating aging tests. The results show that bacteria can colonize in various wrinkles and cracks on the composites with wood flour but also the surface of the cross-linked unsaturated polyester resin. The addition of nanosilver causes the death of bacteria. It also positively influences mechanical and thermomechanical properties as well as gloss of the resin.

11.
Molecules ; 25(21)2020 Nov 03.
Article in English | MEDLINE | ID: mdl-33153027

ABSTRACT

The research was focused on developing a potentially antibacterial wound dressing made of polyurethane foam and loaded with bismuth-ciprofloxacin (Cip-Bi). The Cip-Bi chemical structure was confirmed by Fourier transform infrared spectroscopic (FTIR) analysis. The sought after antibacterial wound dressing was obtained by modification of the raw dressing with an iodine or bromine solution and subsequently with a Cip-Bi hydrogel. The amount of Cip-Bi loaded into the dressing matrix was determined indirectly on the basis of the differences in Cip-Bi concentrations, before and after the modification process, and the determination was performed with the HPLC (high-performance liquid chromatography) method. The modified dressing was found to have a two-step release of Cip-Bi, a feature helpful in the treatment of locally infected wounds and prevention of secondary bacterial infection. The zone of inhibition test against the selected Gram-positive and Gram-negative bacteria confirmed the antibacterial activity of the Cip-Bi-modified dressing. Preliminary tests conducted so far have been indicative of the Cip-Bi dressing's relatively high activity against the tested organisms.


Subject(s)
Anti-Bacterial Agents , Bandages , Bismuth , Ciprofloxacin , Escherichia coli/growth & development , Staphylococcus aureus/growth & development , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Bismuth/chemistry , Bismuth/pharmacology , Ciprofloxacin/chemistry , Ciprofloxacin/pharmacology , Humans , Microbial Sensitivity Tests
12.
Antioxidants (Basel) ; 9(8)2020 Aug 02.
Article in English | MEDLINE | ID: mdl-32748861

ABSTRACT

Hemerocallis plants are important vegetables with nutritional and health value, especially in eastern Asia, where they have been used as medicines to cure disease such as depression and inflammation for thousands of years. The present study concerns the determination of flavonoids and phenolic acids, as well as antioxidant, anti-collagenase, anti-elastase, anti-tyrosinase and antimicrobial properties of taxa cultivated in Poland. For chemical composition estimation, LC-ESI-MS/MS analysis and spectrophotometric assays were performed. The results show the presence of sixteen compounds in all analyzed species. Among the investigated cultivars, it was found that H. "Chicago Apache" and H. fulva var. kwanso have the highest total phenolic acid and flavonoid content. The most abundant compounds in all analyzed extracts were chlorogenic acid (209.8 to 1010.0 µg/g of DE) and quercetin-3-O-rutinoside (114.7 to 1049.7 µg/g of DE). The studied extracts exhibited moderate to high skin-related activities. These properties were correlated with a high concentration of polyphenols. The present study demonstrated that Hemerocallis cultivars contain significant amounts of phenolic compounds with good skin-related activities and could be interesting as novel sources of bioactive agents for the pharmaceutical, food and cosmetic industries.

13.
Antioxidants (Basel) ; 9(9)2020 Aug 26.
Article in English | MEDLINE | ID: mdl-32859126

ABSTRACT

The aim of this study was to compare the chemical composition, as well as antioxidant, anti-inflammatory, antiacne, and cytotoxic activites of various extracts of Cephalaria gigantea and C. uralensis. It is worth underlining that we are the first to characterize the composition and evaluate the biological properties of extracts from Cephalaria gigantea and C. uralensis. Thus, the LC-DAD-MS3 analysis revealed the presence of 41 natural products in studied extracts. The 5-O-caffeoylquinic acid, isoorinetin, and swertiajaponin were the main detected compounds. Among the tested samples, ethanol extract of the aerial parts of C. uralensis (CUE) possessed the most suitable biological properties. It exhibited moderate ability to scavenge free radicals and good capacity to inhibit cyclooxygenase-1, as well as cyclooxygenase-2. Moreover, CUE possessed moderate antibacterial activity against all tested bacterial strains (S. aureus, S. epidermidis, and P. acnes), and importantly, it was non-toxic towards normal skin fibroblasts. Taking into account the value of calculated therapeutic index (>10), it is worth noting that CUE can be subjected to in vivo study. Thus, CUE constitutes a very promising antiacne agent.

14.
Molecules ; 25(9)2020 Apr 27.
Article in English | MEDLINE | ID: mdl-32349230

ABSTRACT

This work aimed to study the anti-bacterial, anti-biofilm and anti-oxidant potential effects of low molecular weight (LMW) peptides (Br-p) isolated from burdock (Arctium lappa L.) roots. We conducted a preliminary study to exclude or confirm the antibiotic activity of the LMW peptides fraction of this plant. Br-p were isolated using gel filtration and a 10 kDa cut-off membrane. The obtained peptides were identified by MALDI TOF/TOF. Antibacterial activity was tested against acne strains using diffusion tests, MIC and MBC. The fibroblast cytotoxicity of Br-p was tested, and the selectivity index (SI) value was determined. The fraction of 46 Br-p peptides isolated from burdock root with a molecular weight below 5000 Da and theoretic pI (isoelectric point) of 3.67-11.83 showed a narrow spectrum of activity against Gram-positive acne bacterial strains. One of the Br-p peptides assessed on MALDI RapidDeNovo was LRCDYGRFFASKSLYDPLKKRR cationic peptide. It was analogous to that contained in A. lappa protein, and theoretically it was matched as a peptide with antibiotic nature. Br-p did not show toxicity to fibroblasts in the tested concentration up to 10 mg/mL, obtaining CC50 10 mg/mL. The SI value for the tested Propionibacterium strains ranged from 160 to 320. Finally, an active dressing based on chitosan/alginate/genipin was prepared using freeze-drying. The formed dressing was evaluated for its anti-acne activity. To sum up: preliminary biological studies confirmed the anti-acne properties of the isolated peptide fraction from burdock root and pointed to the possibility of using it to create an active dressing on the skin.


Subject(s)
Acne Vulgaris/drug therapy , Antioxidants/pharmacology , Arctium/chemistry , Peptides/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Roots/chemistry , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antioxidants/chemistry , Biofilms/drug effects , Cell Survival/drug effects , Escherichia coli/drug effects , Fibroblasts/drug effects , Free Radicals , Inhibitory Concentration 50 , Microscopy, Confocal , Peptides/analysis , Peptides/isolation & purification , Peptides/toxicity , Propionibacterium acnes/drug effects , Pseudomonas aeruginosa/drug effects , Staphylococcus aureus/drug effects , Staphylococcus epidermidis/drug effects , Tandem Mass Spectrometry
15.
Biomed Pharmacother ; 93: 1269-1276, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28747001

ABSTRACT

A series of thiosemicarbazides with 4-nitrophenyl group was obtained in the reaction of carboxylic acid hydrazides with isothiocyanates. All compounds were checked for their antibacterial and antiproliferative activity. Our results have shown that derivatives 6-8 possessed antibacterial activity against S. aureus, S. epidermidis, S. mutans and S. sanguinis, moderate cytotoxicity and good therapeutic safety in vitro. Additionally, compounds 1 and 4 significantly inhibited A549, HepG2 and MCF-7 cell division. Moreover, PASS software indicated that newly obtained compounds are potential α-glucosidase inhibitors. This was confirmed by in vitro studies. To investigate the mode of interaction with the molecular target compounds were docked to glucose binding site of the enzyme and exhibited a similar binding mode as glucose.


Subject(s)
Anti-Bacterial Agents/pharmacology , Cell Proliferation/drug effects , Glycoside Hydrolase Inhibitors/pharmacology , Nitrophenols/pharmacology , Semicarbazides/pharmacology , A549 Cells , Bacteria/drug effects , Binding Sites , Cell Line , Hep G2 Cells , Humans , MCF-7 Cells , Molecular Docking Simulation , Structure-Activity Relationship
17.
Med Chem Res ; 25: 1666-1677, 2016.
Article in English | MEDLINE | ID: mdl-27499604

ABSTRACT

In this study, the antibacterial, cytotoxic and antiproliferative activities of novel thiosemicarbazide derivatives were assessed. Our results demonstrated that some of the novel compounds possess good antibacterial properties against Staphylococcus epidermidis, Streptococcus mutans and Streptococcussanguinis and are only slightly cytotoxic; thus, they exhibit an excellent therapeutic index, which is higher than that of ethacridine lactate. Moreover, our data showed that compounds 2 and 4 have an antiproliferative activity against human breast adenocarcinoma and human hepatocellular carcinoma cell lines. We expect that the novel thiosemicarbazide derivatives can be used as agents for treatment of dental caries and also for chemotherapy support.

18.
J Biomed Mater Res B Appl Biomater ; 100(7): 1874-82, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22903649

ABSTRACT

Urinary catheters are widely used for hospitalized patients and are often associated with high risk of urinary tract infection. The agar and broth diffusion tests, visual TTC (triphenyltetrazolium chloride) method, and confocal scanning laser microscopic (CSLM) observations have shown highly satisfactory antimicrobial and antibiofilm activity of the novel sparfoxacin (SPA)-treated urinary catheters compared with the controversial effectiveness of silver(Ag)-coated catheters against a background of untreated catheters used as controls. SPA-treated catheters were significantly less likely to become colonized (less than 0.01%; inner and outer surfaces against Escherichia coli and Staphylococcus aureus) than both silver-coated (from 0.01% to 39.3 %; outer surface against E. coli and inner surface against S. aureus, resp.) and untreated catheters (from 88.43% to 99.72%; outer and inner surfaces, resp., against S. aureus), and maintained their broad spectrum of antimicrobial and antibiofilm activity during storage for at least 6 months.


Subject(s)
Anti-Infective Agents/chemistry , Biofilms/growth & development , Coated Materials, Biocompatible/chemistry , Escherichia coli/physiology , Silver/chemistry , Staphylococcus aureus/physiology , Urinary Catheters , Materials Testing
SELECTION OF CITATIONS
SEARCH DETAIL
...