Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-487528

ABSTRACT

The BA.2 sub-lineage of the SARS-CoV-2 Omicron variant has gained in proportion relative to BA.1. As differences in spike (S) proteins may underlie differences in their pathobiology, here we determine cryo-EM structures of a BA.2 S ectodomain and compare these to previously determined BA.1 S structures. BA.2 Receptor Binding Domain (RBD) mutations induced remodeling of the internal RBD structure resulting in its improved thermostability and tighter packing within the 3-RBD-down spike. In the S2 subunit, the fusion peptide in BA.2 was less accessible to antibodies than in BA.1. Pseudovirus neutralization and spike binding assays revealed extensive immune evasion while defining epitopes of two RBD-directed antibodies, DH1044 and DH1193, that bound the outer RBD face to neutralize both BA.1 and BA.2. Taken together, our results indicate that stabilization of the 3-RBD-down state through interprotomer RBD-RBD packing is a hallmark of the Omicron variant, and reveal differences in key functional regions in the BA.1 and BA.2 S proteins.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-477784

ABSTRACT

Aided by extensive spike protein mutation, the SARS-CoV-2 Omicron variant overtook the previously dominant Delta variant. Spike conformation plays an essential role in SARS-CoV-2 evolution via changes in receptor binding domain (RBD) and neutralizing antibody epitope presentation affecting virus transmissibility and immune evasion. Here, we determine cryo-EM structures of the Omicron and Delta spikes to understand the conformational impacts of mutations in each. The Omicron spike structure revealed an unusually tightly packed RBD organization with long range impacts that were not observed in the Delta spike. Binding and crystallography revealed increased flexibility at the functionally critical fusion peptide site in the Omicron spike. These results reveal a highly evolved Omicron spike architecture with possible impacts on its high levels of immune evasion and transmissibility.

SELECTION OF CITATIONS
SEARCH DETAIL
...